Produção de farinhas a partir de carcaças de tilápia, pacu e carpa para inclusão em produtos alimentícios
DOI:
https://doi.org/10.33448/rsd-v10i16.21134Palavras-chave:
Ácidos graxos; Carcaça de carpa; Espinhaço de tilápia; Resíduos de pacu.Resumo
O objetivo deste estudo foi desenvolver e caracterizar farinhas a partir de carcaças de tilápia, pacu e carpa para inclusão em produtos alimentícios, visando o enriquecimento nutricional. Carcaças das três espécies foram defumadas a quente e posteriormente submetidas a moagem, resultando nas farinhas. Foram realizadas análises dos rendimentos do processo, composição centesimal, cálcio, ferro, fósforo, ácidos graxos e análises microbiológicas. Os rendimentos das carcaças in natura, defumadas e do processo de defumação foram superiores para a tilápia. As carcaças in natura de tilápia e carpa apresentaram valores superiores de umidade e proteína bruta em relação à carcaça de pacu. A farinha elaborada a partir das carcaças de carpa apresentou maior teor de proteína bruta (36,15%). A farinha de pacu apresentou teor de lipídios significativamente maior (26,33%) em relação às de tilápia e carpa. Foram identificados 23 ácidos graxos nas farinhas elaboradas. Os que tiveram maior representatividade foram o 18:1n-9 (oléico), 16:0 (palmítico), 18:2n-6 (linoléico), 18:0 (esteárico) e 16:1n-7 (palmitoleico). As farinhas apresentaram-se como produtos de elevado teor de proteína bruta, minerais (cálcio, ferro e fósforo) e lipídios totais, além de possuírem em suas composições, ácidos graxos essenciais à dieta humana. A análise microbiológica das farinhas demonstrou resultados dentro dos limites estabelecidos pela legislação brasileira. Portanto, as farinhas de peixe obtidas no presente estudo podem ser utilizadas no enriquecimento de diversos produtos para o consumo humano.
Referências
American Public Health Association -APHA. (2001). Compendium of methods for the microbiological examination of foods. APHA
AOAC. Association of Official Analytical Chemists. (2010). Official methods of analysis of the AOAC International. 18th Ed., 3th Rev: Washington, DC.
Bligh, E. G & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-17.
Brasil. (1997). Ministério da Agricultura e do Abastecimento. Secretaria de Defesa Agropecuária – DAS. Departamento de Inspeção de Produtos de Origem Animal DIPOA. Divisão de Normas Técnicas – DNT. Decreto Lei nº 30.691, de 29 de março de 1952, alterado pelos Decretos nº 1.255, de 25 de junho de 1962, nº 1.236, de 2 de setembro de 1994, nº 1.812, de 18 de fevereiro de 1996, e nº 2.244 de 4 de junho de 1997. Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal. Brasília, DF, 1997. 241 p.
Butte, N. F., Fox, M. K., Briefel, R. R., Siega-Riz, A. M., Dwyer, J. T., Deming, D. M., & Reidy, K. C. (2010). Nutrient intakes of US infants, toddlers, and preschoolers meet or exceed dietary reference intakes. Journal of the American Dietetic Association, 110(12), S27-S37.
Chilton, F. H., Dutta, R., Reynolds, L. M., Sergeant, S., Mathias, R. A., & Seeds, M. C. (2017). Precision nutrition and omega-3 polyunsaturated fatty acids: A case for personalized supplementation approaches for the prevention and management of human diseases. Nutrients, 9(11), 1165.
Clement, S., & Lovell, R. T. (1994). Comparison of processing yield and nutrient composition of cultured Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Aquaculture, 119(2-3), 299-310.
Eijsink, L. M., Krom, M. D., & De Lange, G. J. (1997). The use of sequential extraction techniques for sedimentary phosphorus in eastern Mediterranean sediments. Marine Geology, 139(1-4), 147-155.
Gil, A., & Gil, F. (2015). Peixe, uma fonte mediterrânea de PUFA n-3: Os benefícios não justificam a limitação do consumo. British Journal of Nutrition, 113 (S2), S58-S67.
Girard, J. P. (1991). Tecnología de la carne y de los productos cárnicos (No. 637.5 G4412t Ej. 1 018942). Acribia.
Godoy, L.C., Franco, M.L.R.S., Souza, N.E., Stevanato, F, B. & Visentainer, J. V. (2013). Development, preservation, and chemical and fatty acid profiles of nile tilpaia carcass meal for humanfeeding. Journal of Food Processing and Preservation, 37(2), 93-99.
Goes, E. S.R., Souza, M. L. R., Kimura, K. S., Coradini, M. F., Verdi, R., & Mikcha, J. M. G. (2016a). Inclusion of dehydrated mixture made of salmon and tilapia carcass in spinach cakes. Acta Scientiarum. Technology, 38(2), 241-246.
Goes, E. S. R., Souza, M. L. R., Michka, J. M. G., Kimura, K. S., Lara, J. A. F., Delbem, A. C. B., & Gasparino, E. (2016b). Fresh pasta enrichment with protein concentrate of tilapia: nutritional and sensory characteristics. Food Science and Technology, 36(1), 76-82.
Gonçalves, A. A., & Prentice-Hernández, C. (1998). Fumaça líquida: uma tecnologia para defumar pescado. Boletim SBCTA, 32(2), 189-199.
Hossain, M. A. (2011). Fish as source of n-3 polyunsaturated fatty acids (PUFAs), which one is better-farmed or wild. Advance Journal of food science and technology, 3(6), 455-466.
IBGE - Instituto Brasileiro de Geografia e Estatística. (2020). Produção da Pecuária Municipal 2019. https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2019_v47_br_informativo.pdf
Idea, P., Pinto, J., Ferreira, R., Figueiredo, L., Spínola, V., & Castilho, P. C. (2020). Fish processing industry residues: A review of valuable products extraction and characterization methods. Waste and Biomass Valorization, 11(7), 3223-3246.
Ikape, S. I., & Solomon, S. G. (2018). Filleting yield, body characteristics and length weight relationship of four fish species from lower River Benue Makurdi Nigeria. Aquatic Research, 1(3), 115-126.
International Organization For Standardization (ISO 5509). 1978. Animal and vegetable fats and oils – Preparation of methyl esters of fatty acids.– ISO, 1-6.
Justen, A. P., Souza, M. L. R., Monteiro, A. R., Mikcha, J. M., Gasparino, E., Delbem, Á. B., Carvalho, M. R. B., Del Vesco, A. P. (2017). Preparation of extruded snacks with flavored flour obtained from the carcasses of Nile tilapia: physicochemical, sensory, and microbiological analysis. Journal of Aquatic Food Product Technology, 26(3), 258-266.
Kassebaum, N. J., Jasrasaria, R., Naghavi, M., Wulf, S. K., Johns, N., Lozano, R., ... & Murray, C. J. (2014). A systematic analysis of global anemia burden from 1990 to 2010. Blood, The Journal of the American Society of Hematology, 123(5), 615-624.
Kimura, K. S., Souza, M. L. R. , Gasparino, E., Mikcha, J. M. G., Chambó, A. P. S., Verdi, R., ... & Goes, E. S. R. (2017). Preparation of lasagnas with dried mix of tuna and tilapia. Food Science and Technology, 37, 507-514.
Maga, J. (1988). A smoke in food processing. Colorado, Florida: CRC Press.
Malde, M. K., Graff, I. E., Siljander‐Rasi, H., Venäläinen, E., Julshamn, K., Pedersen, J. I., & Valaja, J. (2010). Fish bones–a highly available calcium source for growing pigs. Journal of animal physiology and animal nutrition, 94(5), e66-e76.
Marti-Quijal, F. J., Remize, F., Meca, G., Ferrer, E., Ruiz, M. J., & Barba, F. J. (2020). Fermentation in fish and by-products processing: An overview of current research and future prospects. Current Opinion in Food Science, 31, 9-16.
Moustarah, F., & Mohiuddin, S. S. (2019). Dietary iron. Treasure Island (FL): StatPearls Publishing.
Pateiro, M., Munekata, P. E., Domínguez, R., Wang, M., Barba, F. J., Bermúdez, R., & Lorenzo, J. M. (2020). Nutritional profiling and the value of processing by-products from gilthead sea bream (Sparus aurata). Marine drugs, 18(2), 101.
Peixe BR. (2021). Associação Brasileira de Piscicultura. Anuário Peixe BR da Piscicultura 2021. São Paulo: Peixe BR.
Pinheiro, L. M. S., Martins, R. T., Pinheiro, L. A. S., & Pinheiro, L. E. L. (2006). Rendimento industrial de filetagem da tilápia tailandesa (Oreochromis spp.). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58, 257-262.
Rodríguez, R., Fountoulaki, E., Grigorakis, K., Alexis, M., & Flos, R. (2010). Season and size effects: changes in the quality of gilthead sea bream (Sparus aurata L.). Mediterranean Marine Science, 11(1), 117-132.
Rørå, A. M. B., Kvåle, A., Mørkøre, T., Rørvik, K. A., Hallbjoørn, S., Thomassen, S., & Magny, S. (1998). Process yield, colour and sensory quality of smoked Atlantic salmon (Salmo salar) in relation to raw material characteristics. Food Research International, 31(8), 601-609.
Schmidt, M. A. (2000). Gorduras inteligentes. São Paulo: Editora Roca LTDA.
Sigurgisladottir, S., Sigurdardottir, M. S., Torrissen, O., Vallet, J. L., & Hafsteinsson, H. (2000). Effects of different salting and smoking processes on the microstructure, the texture and yield of Atlantic salmon (Salmo salar) fillets. Food Research International, 33(10), 847-855.
Silva, A. (2000). Composição lipídica e quantificação dos ácidos graxos polinsaturados EPA (20: 5 n-3) e DHA (22: 6 n-3) de peixes de água doce. (2000). Tese (Doutorado em Ciência de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas.
Silva, D. J. & Queiroz, A. C. (2002). Análise De Alimentos: Métodos Químicos e Biológicos. (3a ed.), Universidade Federal de Viçosa, p. 235, 2002.
Simopoulos, A. P., Leaf, A., & Salem, N. (1999). Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Annals of nutrition & metabolism, 43(2), 127-130.
Souza, M. L. R. (2002). Comparação de seis métodos de filetagem, em relação ao rendimento de filé e de subprodutos do processamento da Tilápia-do-Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia, 31, 1076-1084.
Souza, M. L. R. (2003). Processamento do filé e da pele da tilápia do Nilo (Oreochromis niloticus): Aspectos tecnológicos, composição centesimal, rendimento, vida útil do filé defumado e teste de resistência da pele curtida (Tese de Doutorado em Aquicultura). Centro de Aquicultura da Universidade Estadual Paulista (UNESP/Jaboticabal), Jaboticabal.
Souza, M. L. R., Yoshida, G. M., Campelo, D. A. V., Moura, L. B., Xavier, T. O., & dos Reis Goes, E. S. (2017). Formulation of fish waste meal for human nutrition. Acta Scientiarum. Technology, 39, 525-531.
Souza, M. L. R., Viegas, E. M. M., Kronka, S. N., Amaral, L. A., Parisi, G., Coradini, M. F., & Goes, E. S. R. (2020). Cold and hot smoked nile tilapia fillets: quality and yield of pigmented and unpigmented fillets. Italian Journal of Food Science, 32(2), 450-465.
Souza, M. L. R., Urbich, A. V., Müller, B.O., Coradini, M. F., Oliveira, G. G., Matiucci, M. A., ... & Goes, E. S.R. (2021). Sopa instantânea com inclusão de farinhas de peixes. Research, Society and Development, 10(8), e35910817247-e35910817247.
Steffens, W. (1997). Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture, 151(1-4), 97-119.
Strànsky, K., Jursík, T., & Vítek, A. (1997). Standard equivalent chain length values of monoenic and polyenic (methylene interrupted) fatty acids. Journal of High Resolution Chromatography, 20(3), 143-158.
Turchini, G.M.; Torstensen, B.E.; Ng, W.K. (2009). Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1(1), 10-57.
Uribarri, J., & Calvo, M. S. (2017). Dietary Phosphorus: Health, Nutrition, and Regulatory Aspects. Boca Raton: CRC Press, Taylor & Francis Group.
Visentainer, J. V. (2003). Composição de ácidos graxos e quantificação dos ácidos graxos LNA, EPA e DHA no tecido muscular de tilápias (Oreochromis niloticus), submetidas a diferentes tratamentos com óleo de linhaça. Tese. Campinas: Universidade Estadual de Campinas.
Wołoszyn, J., Haraf, G., Okruszek, A., Wereńska, M., Goluch, Z., & Teleszko, M. (2020). Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poultry science, 99(2), 1216-1224.
Zara, R. F. (2005). Qualidade de filés de Tilápia do Nilo (Oreochromis niloticus) submetidos à defumação com extrato aquoso de alecrim (Rosmarinus officinalis). Dissertação (Mestrado em Química). Universidade Estadual de Maringá.
Zhou, H. Y., Cheung, R. Y. H., Chan, K. M., & Wong, M. H. (1998). Metal concentrations in sediments and tilapia collected from inland waters of Hong Kong. Water Research, 32(11), 3331-3340.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Maria Luiza Rodrigues de Souza; Leandro Cesar de Godoy; Jesuí Vergílio Visentainer; Nilson Evelazio de Souza; Nilson do Prado Franco; Gislaine Gonçalves Oliveira; Andresa Carla Feihrmann; Elenice Souza dos Reis Goes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.