Haloperidol aumenta a peroxidação lipídica hepática promovida por uma dieta rica em gordura em ratos

Autores

DOI:

https://doi.org/10.33448/rsd-v9i2.2153

Palavras-chave:

Haloperidol; Magnésio intracelular; Dieta hiperlipídica; Estresse oxidativo; Peroxidação lipídica.

Resumo

Este estudo teve por objetivo avaliar os efeitos do tratamento com haloperidol (HAL) associado a uma dieta rica em gordura (DRG) sobre danos hepáticos e renais, níveis intracelulares de magnésio (Mg2+) e níveis de gordura abdominal. Ratos Wistar machos jovens foram alimentados com DRG ou dieta controle por 48 semanas e, na 24º semana, parte dos animais começou a ser co-tratada com HAL (1 mg/kg/dia por via intramuscular). Após 4 semanas da administração do HAL, os ratos foram eutanasiados e seus fígados e rins foram removidos para as análises. Os resultados mostraram que a DRG aumentou significativamente a peroxidação lipídica no tecido hepático dos animais, quando comparados aos animais tratados com dieta controle (P <0,05). Além disso, a associação entre DRG e HAL potencializou a lipoperoxidação no fígado dos animais (P <0,05). Por outro lado, a DRG e/ou HAL não promoveram alterações significativas nos níveis renais de lipoperoxidação. Encontramos uma correlação negativa entre os níveis intracelulares de Mg2+ e o conteúdo de gordura abdominal em todos os animais. Em conclusão, os dados apresentados sugerem interações adversas entre HAL e DRG no fígado. Além disso, a correlação negativa entre os níveis intracelulares de Mg2+ e o conteúdo de gordura abdominal, indica um possível envolvimento de Mg2+ no desenvolvimento da síndrome metabólica associada a uma DRG.

Referências

Andreazza, A.C., Barakauskas, V.E., Fazeli, S., Feresten, A., Shao, L., Wei, V., Wu, C.H., Barr, A.M., & Beasley, C.L. (2015). Effects of haloperidol and clozapine administration on oxidative stress in rat brain, liver and serum. Neuroscience Letters, 591:36-40. doi: 10.1016/j.neulet.2015.02.028. Epub 2015 Feb 13.

Axen, K.V., Dikeakos, A., & Sclafani, A. (2003). High dietary fat promotes syndrome X in non obese rats. The Journal of Nutrition, 133: 2244-2249.

Bisschop, P.H., de Metz, J., Ackermans, M.T., Endert, E., Pijl, H., Kuipers, F., Meijer, A.J., Sauerwein, H.P., & Romijn, J.A. (2001). Dietary fat content alters insulin-mediated glucose metabolism in healthy men. The American Journal of Clinical Nutrition, 73: 554-559.

Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 27: 248-254.

Chen, Y. (2003). High fat diet induces severe hepatic fibrosis in inducible nitric oxide gene-knockout mice. Hepatology, 36: 1-336.

Choi, J.Y., Jang, E., Park, C., & Kang, J. (2005). Enhanced susceptibility to 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radical Biology and Medicine, 38: 806-816.

Cope, M.B., Nagy, T.R., Fernández, J.R., Geary, N., Casey, D.E., & Allison, D.B. (2005). Antipsychotic drug-induced weight gain: development of an animal model. International Journal of Obesity, 29: 607-614.

Dalla Corte, C.L., Fachinetto, R., Colle, D., Pereira, R.P., Ávila, D.S., Villarinho, J.G., Wagner, C., Pereira, M.E., Nogueira, C.W., Soares, F.A.A., & Rocha, J.B.T. (2008). Potentially adverse interactions between haloperidol and valerian. Food and Chemical Toxicology, 46: 2369–2375.

Fachinetto, R., Burger, M.E., Wagner, C., Wondracel, D.C., Brito, V.B., Nogueira, C.W., Ferreira, J., & Rocha, J.B.T. (2005). High fat increases the incidence of orofacial dyskinesia and oxidative stress in specific brain regions of rats. Pharmacology Biochemistry and Behavior, 81: 585-592.

Folmer, V., Soares, J.C.M., & Rocha, J.B.T. (2002). Oxidative stress in mice is dependent on the free glucose content of the diet. The International Journal of Biochemistry & Cell Biology, 34: 1279-85.

Folmer, V., Soares, J.C.M., Gabriel, D., & Rocha, J.B.T. (2003). A high fat-diet inhibits delta aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). The Journal of Nutrition, 133: 2165-2170.

Ford, E.S., & Mokdad, A.H. (2003). Dietary Magnesium Intake in a National Sample of US adults. The Journal of Nutrition, 133: 2879-82.

Forsman, G., Folsch, M., Larsson, M., & Ohman, R. (1977). The metabolism of haloperidol in man. Current Therapeutic Research, Clinical and Experimental, 21: 606-617.

Freedman, A.M., Mak, I.T., Stafford, R.E., Dickens, B.F., Cassidy, M.M., Muesing, R.A., & Weglicki, W.B. (1999). Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. American Journal of Physiology, 262: C1371-C1375.

Gonzalez, F.J. (2005). Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutation Research, 569: 101-110.

Greenwood, C.E., & Winocur, G. (2005). High fat diet, insulin resistance and declining cognitive function. Neurobiology of Aging, 265: 542-545.

Halliwell, B. (1982). Superoxide-dependent formation of hidroxil radicals in the presence of iron salts is a feasible source of hidroxil radicals in vivo. Biochemical Journal, 205: 462-472.

Halliwell, B., & Gutteridge, J.M.C. (1986). Oxygen free radical and iron relation to biology and medicine: some problem and concepts. Archives of Biochemistry and Biophysics, 246: 501-514.

Hashimoto, T. (1996). Peroxisomal ß-oxidation: enzymology and molecular biology. Annals of the New York Academy of Sciences, 804: 86-98.

Ige, A.O., Adewoye, E.O., & Makinde. E.O. (2016). Oral Magnesium Potentiates Glutathione Activity in Experimental Diabetic Rats. International Journal of Diabetes Research, 5(2): 21-25. doi: 10.5923/j.diabetes.20160502.01

Lin, E.J., Lee, N.J., Slack, K., Karl, T., Duffy, L., O'brien, E., Matsumoto, I., Dedova, I., Herzog, H., & Sainsbury, A. (2006). Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats. Neuropharmacology, 51: 1129-36.

Lopez-Ridaura, R., Willett, W.C., Rimm, E.B., Liu, S., Stampfer, M.J., Manson, J.E., & Hu, F.B. (2004). Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care, 27: 134-140.

Mondelli, V., Anacker, C., Vernon, A.C., Cattaneo, A., Natesan, S., Modo, M., Dazzan, P., Kapur, S. & Pariante, C.M. (2013). Haloperidol and olanzapine mediate metabolic abnormalities through different molecular pathways. Translational psychiatry, 3(1), e208. doi:10.1038/tp.2012.138

Moram, M.R., & Romero, F.G. (2003). Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetes subjects. Diabetes Care, 26: 1147-1152.

Morgan, K., Mao, L., French, S., & Morgan, T.R. (2003). Fatty liver histologic features of non-alcoholic steatohepatitis (NASH) develop in male mice fed a nutritionally complete high fat diet. Hepatology, 38; 1-501.

Nadler, J.L. (2004). A new dietary approach to reduce the risk of type 2 diabetes? Diabetes Care, 27: 270-271.

Nechifor, M. (2008). Interactions between magnesium and psychotropic drugs. Magnesium Research, 21: 97-100.

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351-358.

Paiva Sousa, M., Cruz, K.J.C., Melo, S.R.S., Araújo, D.S.C, Soares, T.C., & Marreiro, D.N. (2020). Influência do Magnésio e Cálcio sobre o Estresse Oxidativo na Obesidade. Research, Society and Development, v.9, n.1, e124911776. doi: http://dx.doi.org/10.33448/rsd-v9i1.1776

Paolisso, G., & Barbagallo, M. (1997). Hypertension, diabetes mellitus and insulin resistance: the role of intracellular magnesium. American Journal of Hypertension, 10: 346-355.

Polydoro, M., Schröder, N., Lima, M.N.M., Caldana, F., Laranja, D.C., Bromberg, E., Roesler, R., Quevedo, J., Moreira, J.C.F., & Dal-Pizzol, F. (2004). Haloperidol-and clozapine-induced oxidative stress in the rat brain. Pharmacology Biochemistry and Behavior, 78: 751-756.

Pryor, W.A., & Squadrito, G.L. (1995). The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 268: L699-L722.

Rayssiguier, Y., Gueux, E., Bussière, L., Durlach, J., & Mazur, A. (1993). Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of the American College of Nutrition, 12: 133-137.

Reinke, A., Martins, M.R., Lima, M.S., Moreira, J.C., Dal-Pizzol, F., & Quevedo, J. (2004). Haloperidol and clozapine, but not olanzepine, induces oxidative stress in rat brain. Neuroscience Letters, 372: 157-160.

Ronis, M.J., Korourian, S., Zipperman, M., Hakkak, R., & Badger, T.M. (2004). Dietary Saturated Fat Reduces Alcoholic Hepatotoxicity in Rats by Altering Fatty Acid Metabolism and Membrane Composition. Journal of Nutrition, 134: 904-912.

Saiki, R., Okazaki, M., Iwai, S., Kumai, T., Kobayashi, S., & Oguchi, K. (2007). Effects of pioglitazone on increases in visceral fat accumulation and oxidative stress in spontaneously hypertensive hyperlipidemic rats fed a high-fat diet and sucrose solution. Journal of Pharmaceutical Sciences, 105: 157-167.

Salgueiro, A.C.F., Folmer, V., Silva, M.P., Mendez, A.S.L., Zemolin, A.P.P., Posser, T., Franco, J.L., Puntel, R.L., & Puntel, G.O. (2016). Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice. Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 8902954, 9 pages. doi: https://doi.org/10.1155/2016/8902954.

Sastre, J., Pallardó, F.V., & Viña, J. (2003). The role of mitochondrial oxidative stress in aging. Free Radical Biology and Medicine, 35: 1-8.

Sharma, R.K., Lake, B.G., Makowsky, R., Bradshaw, T., Earnshaw, D., Dale, J.W., & Gibson, G.G. (1989). Differential induction of peroxisomal and microsomal fatty-acid-oxidizing enzymes by peroxisome proliferators in rat liver and kidney. European Journal of Biochemistry, 189: 69-78.

Soudijn, W., Van Wijngaarden, I., & Allewijn, F. (1967). Distribution, excretion and metabolism of neuroleptics of the butyrophenone type: part I. Excretion and metabolism of haloperidol and nine related butyrophenone-derivatives in the Wistar rat. European Journal of Pharmacology, 1: 47-57.

Su, G.M., Fiala-Beer, E., Weber, J., Jahn, D., Robertson, G.R., & Murray, M. (2005). Pretranslational upregulation of microsomal CYP4A in rat liver by intake of a high-sucrose, lipid-devoid diet containing orotic acid. Biochemical Pharmacology, 69: 709-717.

Telles-Correia, D., Barbosa, A., Cortez-Pinto, H., Campos, C., Rocha, N. B., & Machado, S. (2017). Psychotropic drugs and liver disease: A critical review of pharmacokinetics and liver toxicity. World journal of gastrointestinal pharmacology and therapeutics, 8(1), 26–38. doi:10.4292/wjgpt.v8.i1.26

Visgueira de Sousa, T.G., Oliveira, A.R.S., Cruz, K.J.C., Araújo, D.S.C., Sousa, M.P., Melo, S.R.S., Silva, V.C., Sousa, G.S., & Marreiro, D.N. (2020). Ingestão dietética de magnésio e ferro e sua relação com estresse oxidativo em mulheres obesas. Research, Society and Development, v.9, n.1, e160911732. doi: http://dx.doi.org/10.33448/rsd-v9i1.1732

Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 24: 27-37.

Wan, G., Ohnomi, S., & Kato, N. (2000). Increased hepatic activity of inducible nitric oxide synthase in rats fed on a high-fat diet. Bioscience, Biotechnology, and Biochemistry, 64: 555-561.

Wright, A.M., Bempong, J., Kirby, M.L., Barlow, R.L., & Bloomquist, J.R. (1998). Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia. Brain Research, 788: 215-222.

Downloads

Publicado

01/01/2020

Como Citar

SILVEIRA, I. D. da; ROOS, D. H.; SALGUEIRO, A. C. F.; FOLMER, V.; ROCHA, J. B. T. da; PUNTEL, R. L. Haloperidol aumenta a peroxidação lipídica hepática promovida por uma dieta rica em gordura em ratos. Research, Society and Development, [S. l.], v. 9, n. 2, p. e148922153, 2020. DOI: 10.33448/rsd-v9i2.2153. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2153. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas