Comparação de modelos matemáticos da cinética da secagem de folhas de pennyroyal (Mentha pulegium L.)

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.21924

Palavras-chave:

Secagem por convecção; Modelo matemático; Curvas de secagem.

Resumo

Mentha pulegium L., popularly known as pennyroyal, has simple leaves that give off a pleasant aroma when crushed. The main objective of this work was to carry out the drying of pennyroyal leaves, to estímate the effective diffusion coefficient through drying kinetics in forced convection, and to, determine the best mathematical model at four different temperatures (40, 50, and 60 ºC) inflow. 1.5 m/s air. Analyzing the drying curves, it was observed that the drying kinetics were strongly influenced by temperature. The thin layer models that best fit the experimental data were Approximate Diffusion, Two Terms, and Logarithmic for the temperatures of 40, 50, and 60  °C, respectively. The evaluation method used the R² (coefficient of determination), RMSE (root-mean-square), and X² (chi-square), and the coefficient of determination parameter remained >0.90. The effective diffusion coefficient decreased 74% with increasing temperature from 40 ºC to 60 ºC and enthalpy and entropy decreased with increasing temperature, while Gibb's free energy increased 5% for each increment of 10 ºC in temperature.

Referências

Ahmed, A., Ayoub, K., Chaima, A. J, Hanaa, L., & Abdelaziz, C. (2018). Effect of drying methods on yield, chemical composition and bioactivities of essential oil obtained from Moroccan Mentha pulegium L. Biocatalysis and Agricultural Biotechnology, 16(October), 638–643. https://doi.org/10.1016/j.bcab.2018.10.016

Chua, K. J., Mujumdar, A. S., Chou, S. K., Hawlader, M. N., & Ho, J. C. (2000). Convective Drying Of Banana, Guava And Potato Pieces : Effect Of Cyclical Variations Of Air Temperature On Drying Kinetics And Color Change. Drying Technology, 18(4–5), 907–936. https://doi.org/10.1080/07373930008917744

Da Silva Morais, S. J., Devilla, I. A., Ferreira, D. A., & Teixeira, I. R. (2013). Mathematical modeling of drying curves and diffusion coefficient of cowpea beans (vigna unguiculata (L.) walp.). Revista Ciencia Agronomica, 44(3), 455–463. https://doi.org/10.1590/S1806-66902013000300006

de Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., & Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia HBK McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. https://doi.org/10.1016/j.foodres.2014.05.018

Deamici, K. M., de Oliveira, L. C., da Rosa, G. S., & de Oliveira, E. G. (2016). Drying kinetics of fermented grape pomace: Determination of moisture effective diffusivity. Brazilian Journal of Agricultural and Environmental Engineering, 20(8), 763–768. https://doi.org/10.1590/1807-1929/agriambi.v20n8p763-768

Fiorentin, L. D., Menon, B. T, Alves, J. A, Barros, S. T. D. de, Pereira, N. C., & Modenes, A. N. (2010). Determination of the drying kinetics and isotherms of orange bagasse. Acta Scientiarum. Technology, 32(2). https://doi.org/10.4025/actascitechnol.v32i2.8242

Henríquez, C., Córdoba, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146–153. https://doi.org/10.1016/j.jfoodeng.2014.06.037

Jideani, V. A, & Mpotokwana, S. M (2009). Modeling of water absorption of Botswana bambara varieties using Peleg ' s equation. Journal of Food Engineering, 92(2), 182–188. https://doi.org/10.1016/j.jfoodeng.2008.10.040

Leite, A. L. M. P., da Silva, F. S., Porto, A. G., Piasson, D., & dos Santos, P. (2015). Volumetric shrinkage and drying kinetics of Terra variety banana slices. Tropical Agricultural Research, 45(2), 155–162. https://doi.org/10.1590/1983-40632015v4530270

Madamba, P. S, Driscoll, . RH, & Buckle, K. A (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75–97. https://doi.org/10.1016/0260-8774(95)00062-3

Mghazli, S., Ouhammou, M., Hidar, N., Lahnine, L., Idlimam, A., & Mahrouz, M. (2017). Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 108, 303–310. https://doi.org/10.1016/j.renene.2017.02.022

Mollaei, S., Ebadi, M., Hazrati, S., Habibi, B., Gholami, F., & Sourestani, M. M. (2020). Essential oil variation and antioxidant capacity of Mentha pulegium populations and their relation to ecological factors. Biochemical Systematics and Ecology, 91(May), 104084. https://doi.org/10.1016/j.bse.2020.104084

Oliveira, G. H. H. et al. (2015). Modeling and thermodynamic properties of strawberry drying Modeling and thermodynamic properties of strawberry drying. 18(4), 314–321. https://doi.org/10.1590/1981-6723.5315

Tavone, L. A da S., Nascimento, K. M, Fachina, Y. J, Madrona, G. S, Bergamasco, R. de C., & Scapim, M. R da S. (2021). Mathematical modeling and effect of thin-layer drying and lyophilization on antioxidant compounds from ultrasonic-assisted extracted muntingia calabura peels. Acta Scientiarum - Agronomy, 43, 1–8. https://doi.org/10.4025/ACTASCIAGRON.V43I1.50301

Yakoubi, R., Megateli, S., Hadj Sadok, T., & Gali, L. (2021). Photoprotective, antioxidant, anticholinesterase activities and phenolic contents of different Algerian Mentha pulegium extracts. Biocatalysis and Agricultural Biotechnology, 34(March), 102038. https://doi.org/10.1016/j.bcab.2021.102038

Downloads

Publicado

29/04/2022

Como Citar

LUZ, W. da .; SANTOS, G. P. dos .; SILVA, L. A. da .; ARÉVALO, C. R. B. .; PINEDO, A. A. .; MALDONADO, C. A. B. .; CORTEZ-VEGA, W. R. .; PIZATO, S.; PINEDO, R. A. . Comparação de modelos matemáticos da cinética da secagem de folhas de pennyroyal (Mentha pulegium L.) . Research, Society and Development, [S. l.], v. 11, n. 6, p. e33011621924, 2022. DOI: 10.33448/rsd-v11i6.21924. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21924. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas