Avaliação de meios e condições de cultivo de fungos filamentosos Amazônicos em um programa de triagem de antimicrobianos

Autores

DOI:

https://doi.org/10.33448/rsd-v10i14.22065

Palavras-chave:

Antimicrobianos; Fungos; Compostos bioativos; Meios de cultivo; Condições de cultivo; Metabólitos secundários.

Resumo

A redescoberta de compostos bioativos é um problema dentro dos programas de triagem de produtos naturais, isto porque a diversidade químico-genética dos fungos é pouco explorada e a padronização das condições de cultivo que permitam a obtenção de novos ativos é crítica em tais programas. Neste trabalho, avaliou-se o impacto de dois meios sólidos (arroz e aveia), um meio líquido (caldo Czapeck) e diferentes condições de fermentação, com objetivo de explorar novas rotas metabólicas. Foram utilizados 12 fungos filamentosos de ambientes Amazônicos. A espectrofotometria UV-Vis estimou a complexidade dos extratos produzidos. A atividade antimicrobiana dos extratos foi avaliada contra um isolado de cada cepa de Escherichia coli, Salmonella sp. e Staphylococcus aureus. Os meios sólidos mostraram-se mais promissores, pois permitiram a obtenção de uma gama maior de metabólitos ativos. O meio aveia proporcionou maior variedade de metabólitos, mas devido à grande complexidade dos extratos obtidos, os procedimentos de separação foram consideravelmente mais complexos do que o arroz. Em conjunto, o meio de cultivo em arroz e o uso de 39 dias de fermentação mostraram-se condições mais promissoras do que o meio líquido normalmente empregado em programas de triagem no Brasil. O cultivo de Penicillium maximae (isolado pela segunda vez em território brasileiro) em meio sólido proporcionou a produção de frações ativas contra E. coli em bioautografia. Neste estudo, observou-se que diferentes condições de fermentação em cultivo sólido são considerávelmente promissoras na busca de produtos naturais bioativos.

Referências

Adpressa, D., & Loesgen, S. (2016). Bioprospecting Chemical Diversity and Bioactivity in a Marine Derived Aspergillus terreus. Chemistry & Biodiversity, 13 (2), 253–259.

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce, & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature reviews Drug discovery, 20(3), 200–216.

Awaad, A. S., Nabilah, A. J. A., & Zain, M. E. (2012). New Antifungal Compounds from Aspergillus terreus Isolated from Desert Soil. Phytotherapy Research, 26 (12), 1872–1877.

Azerang, P., Khalaj, V., Kobarfard, F., Owlia, P., Sardari, S., & Shahidi, S. (2019). Molecular Characterization of a Fungus Producing Membrane Active Metabolite and Analysis of the Produced Secondary Metabolite. Iran Biomedical Journal, 23 (2), 121-8.

Bérdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics, 65 (8), 441–441.

Chagas, M. B. O., Prazeres, S. I., Nascimento, S. L.C., Correia, M. T. D. S., Magali, de A. J., Cavalcanti, M. D. S., & Lima, V. L. M. (2017). Antimicrobial Activity of Cultivable Endophytic Fungi Associated with Hancornia Speciosa Gomes Bark. Open Microbiology Journal, 11, 179-188.

Cruz, A. L., Souza, F. S. de., & Abegg, M. A. (2019). Anti-Candida and anti-quorum sensing activity of airborne microorganisms detected by a rapid method. Revista da Sociedade Brasileira de Medicina Tropical, 52 (0).

Dayanidhi, D. L., Thomas, B. C., Osterberg, J. S., Vuong, M., Vargas, G., Kwartler, S. K., Schmaltz, E., Dunphy-Daly, M. M., Schultz, T. F., Rittschof, D., Eward, W. C., Roy, C., & Somarelli, J. A. (2021). Exploring the Diversity of the Marine Environment for New Anti-cancer Compounds. Frontiers in Marine Science, 1184 (7), 2296-7745.

Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., & Dua, T. K. (2015). Bioautography and its scope in the field of natural product chemistry. Journal of Pharmaceutical Analysis, 5 (2), 75-84.

Du, L., King, J. B., Morrow, B. H., Shen, J. K., Miller, A. N., & Cichewicz, R. H. (2012). Diarylcyclopentendione metabolite obtained from a Preussia typharum isolate procured using an unconventional cultivation approach. Journal of Natural Products, 75 (10), 1819-23.

Etame, R. M. E., Mouokeu, R. S., Poundeu, F. S. M., Voukeng, I. K., Cidjeu, C. L. P., Tiabou, A. T., Yaya, A. J. G., Ngane, R. A. N., Kuiate, J. R., & Etoa, F. X. (2019). Effect of fractioning on antibacterial activity of n-butanol fraction from Enantia chlorantha stem bark metanol extract. BMC Complementary and Alternative Medicine, 19 (1), 56.

Fleming, H. P., Etchells, J. L., & Costilow, R. N. (1975). Microbial inhibition by an isolate of pediococcus from cucumber brines. Applied microbiology, 30(6), 1040–1042.

Gao, S. S., Shang, Z., Li, X. M., Li, C. S., Cui, C. M., & Wang, B. G. (2012). Secondary Metabolites Produced by Solid Fermentation of the Marine-Derived Fungus Penicillium commune QSD-17. Bioscience Biotechnology Biochemistry, 76(2), 358–360.

Gomes, C. C., Pinto, L. C. C., Victor, F. L., da Silva, E. A. B., Ribeiro, A. de A., Saqruis, M. I. de M., & Camões, I. C. G. (2015). Aspergillus in endodontic infection near the maxillary sinus. Brazilian Journal of Otorhinolaryngology, 81 (5), 527–532.

Hemphill, C. F. P., Sureechatchaiyan, P., Kassack, M. U., Orfali, R. S., Lin, W., Daletos, G., & Proksch, P. (2017). OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. The Journal of Antibiotics, 70 (6), 726–732.

Katoch, M., Phull, S., Vaid, S., & Singh, S. (2017). Diversity, Phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L. BMC Microbiology, 17 (1).

Li, W., Ding, L., Wang, N., Xu, J., Zhang, W., Zhang, B., & Jin, H. (2019). Isolation and Characterization of Two New Metabolites from the Sponge-Derived Fungus Aspergillus sp. LS34 by OSMAC Approach. Marine Drugs, 17 (5), 283.

Li, Y. F., Wu, X. B., Niaz, S. I., Zhang, L. H., Huang, Z. J., Lin, Y. C., Li, J., & Liu, L. (2016). Effect of culture conditions on metabolites produced by the crinoid-derived fungus Aspergillus ruber 1017. Natural Product Research, 31 (11), 1299–1304.

Lotfy, M. M., Sayed, A. M., AboulMagd, A. M, Hassan, H. M., El Amir, D., Abouzid, S. F., El-Gendy, A. O., Rateb, M. E., Abdelmohsen, R. U., Alhadrami, H., & Mohammed, R. (2021). Metabolomic profiling, biological evaluation of Aspergillus awamori, the river Nile-derived fungus using epigenetic and OSMAC approaches. Royal Society and Chemistry, 11, 6709.

Noumi, E., Merghni, A., M Alreshidi, M., Haddad, O., Akmadar, G., De Martino, L., Mastouri, M., Ceylan, O., Snoussi, M., Al-Sieni, A., & De Feo, V. (2018). Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for Evaluating Anti-Quorum Sensing Activity of Melaleuca alternifolia Essential Oil and Its Main Component Terpinen-4-ol. Molecules, 23 (10).

Ochi, K. (2016). Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. Journal of Antibiotics, 70 (1), 25–40.

Özkaya, F. C., Ebrahim, W., El-Neketi, M., Tansel, T. T, Kalscheuer, R., Muller, W. E. G., Guo, Z., Zou, K., Liu, Z. & Proksch, P. (2018). Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia, 131:9-14.

Palma Esposito, F., Giugliano, R., Della Sala, G., Vitale, G. A., Buonocore, C., Ausuri, J., Galasso, C., Coppola, D., Franci, G., Galdiero, M., & de Pascale, D. (2021). Combining OSMAC Approach and Untargeted Metabolomics for the Identification of New Glycolipids with Potent Antiviral Activity Produced by a Marine Rhodococcus. International journal of molecular sciences, 22(16), 9055.

Pan, R., Bai, X., Chen, J., Zhang, H., & Wang, H. (2019). Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Frontiers in Microbiology, 10, 294.

Raghava Rao, K. V., Mani, P., Satyanarayana, B., & Raghava Rao, T. (2017). Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavus BC 01 and their biological activity. Biotech, 7 (1), 24.

Rani, R., Sharma, D., Chaturvedi, M., & Yadav, J. P. (2017). Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clinical Microbiology, 6 (3), 280.

Romano, S., Jackson, S. A., Patry, S., & Dobson, A. D. W. (2018). Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Marine Drugs, 16 (7).

Sanchez, J. F., & Wang, C. C. (2012). The chemical identification and analysis of Aspergillus nidulans secondary metabolites. Methods of Molecluar Biology, 944, 97-109.

Scopel, M., Mothes, B., Lerner, C. B., Henriques, A. T., Macedo, A. J., & Abraham, W. R. (2017). Arvoredol—An unusual chlorinated and biofilm inhibiting polyketide from a marine Penicillium sp. of the Brazilian coast. Phytochemistry Letters, 20, 73–76.

Silveira, L. M., Olea, R. S. G., Mesquita, J. M., Cruz, A. L. N., & Mendes, J. C. (2009). Metodologias de atividade antimicrobiana aplicadas a extratos de plantas: comparação entre duas técnicas de ágar difusão. Revista Brasileira de Farmácia, 90 (2) 2, 124-128.

Tchoukoua, A., Hasegawa, R., Hendracipta, K. A., Sato, S., Koseki, T., & Shiono, Y. (2018). Structure elucidation of new fusarielins from Fusarium sp. and their antimicrobial activity. Magnetic Resonance Chemistry, 56 (1), 32–36.

Tonial, F., Maia, B. H. L. N. S., Gomes-Figueiredo, J. A., Sobottke, A. M., Bertol, C. D., Nepel, A., Savi, D. C., Vicente, V. A., Gomes, R. R., & Glienke, C. (2015). Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius. Current Microbiology, 72 (2), 173–183.

VanderMolen, K. M., Raja, H. A., El-Elimat, T., & Oberlies, N. H. (2013). Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express, 3(1), 71.

Wang, B., Park, E. M., King, J. B., Mattes, A. O., Nimmo, S. L., Clendinen, C., Edison, A. S., Anklin, C., & Cichewicz, R. H. (2015). Transferring Fungi to a Deuterium-Enriched Medium Results in Assorted, Conditional Changes in Secondary Metabolite Production. Journal of Natural Products, 78 (6), 1415-21.

Yue, Y., Yu, H., Li, R., Xing, R., Liu, S., & Li, P. (2015). Exploring the Antibacterial and Antifungal Potential of Jellyfish-Associated Marine Fungi by Cultivation-Dependent Approaches. Plos One, 10 (12), e0144394.

Zutz, C., Bacher, M., Parich, A., Kluger, B., Gacek- Matthews, A., Schuhmacher, R., Wagner, M., Rychli, K., & Strauss, J. (2016). Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores. Frontiers in Microbiology, 7, 510.

Downloads

Publicado

05/11/2021

Como Citar

NEGREIROS, M. A.; GUEDES, M. V.; RODRIGUES, T. K. de S. .; RODRIGUES, B. R. .; CRUZ, A. L.; ROSA, P. D. da .; ANDRADE, S. F. de; FUENTEFRIA, A. M. .; CAMPOS, R.; ABEGG, M. A. Avaliação de meios e condições de cultivo de fungos filamentosos Amazônicos em um programa de triagem de antimicrobianos. Research, Society and Development, [S. l.], v. 10, n. 14, p. e370101422065, 2021. DOI: 10.33448/rsd-v10i14.22065. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22065. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde