Análise dos efeitos de comportamentos altruístas e egoístas em redes de transporte
DOI:
https://doi.org/10.33448/rsd-v10i14.22514Palavras-chave:
Agentes; Rede de transporte; Altruísmo; Simulação; Congestionamento.Resumo
Redes de transporte são infraestruturas fundamentais para a dinâmica de grandes centros urbanos. Essas estruturas estão sujeitas a congestionamentos, que trazem um forte impacto social, econômico e ambiental. Neste trabalho, foi construído um modelo de simulação baseado em agentes, a fim de investigar como comportamentos altruístas na seleção de rotas pode afetar os tempos de viagem e a distribuição de fluxo em uma rede de transporte. Métodos: A base de dados aberta OpenStreetMap foi utilizada para obter a estrutura da rede de transporte. A teoria de redes complexas foi usada para realizar a simulação e estimar os impactos do congestionamento. Simulando fluxos de mobilidade, foram analisados como os critérios de seleção de trajeto dos agentes influenciam nos níveis de congestionamento, nos comprimentos de trajeto e nos tempos de viagem. Resultados: altruísta reduz significativamente a propagação de congestionamentos e a formação de agrupamentos de vias congestionadas na rede de transporte, assim como reduz o tempo médio de viagem entre dois pontos, mas aumenta a distância média percorrida numa proporção menor.
Referências
Auld, J., Verbas, O., & Stinson, M. (2019). Agent-based dynamic traffic assignment with information mixing. Procedia Computer Science, 151, 864-869.
Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge university press.
Barthelemy, J., & Carletti, T. (2017). A dynamic behavioural traffic assignment model with strategic agents. Transportation Research Part C: Emerging Technologies, 85, 23-46.Ben-Akiva, M. E., Gao, S., Wei, Z., & Wen, Y. (2012). A dynamic traffic assignment model for highly congested urban networks. Transportation research part C: emerging technologies, 24, 62-82.
Ben-Akiva, M. E., Gao, S., Wei, Z., & Wen, Y. (2012). A dynamic traffic assignment model for highly congested urban networks. Transportation research part C: emerging technologies, 24, 62-82.Ben-Akiva, M. E., Gao, S., Wei, Z., & Wen, Y. (2012). A dynamic traffic assignment model for highly congested urban networks. Transportation research part C: emerging technologies, 24, 62-82.
Boeing, G. (2019). Urban spatial order: Street network orientation, configuration, and entropy. Applied Network Science, 4(1), 1-19.
Boeing, G. (2020). A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood. Environment and Planning B: Urban Analytics and City Science, 47(4), 590-608.
Casali, Y., & Heinimann, H. R. (2020). Robustness response of the Zurich road network under different disruption processes. Computers, Environment and Urban Systems, 81, 101460.
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 036125.Eikenbroek, O. A., Still, G. J., & van Berkum, E. C. (2021). Improving the performance of a traffic system by fair rerouting of travelers. European Journal of Operational Research.
Das, A. K., & Rama Chilukuri, B. (2020). Link Cost Function and Link Capacity for Mixed Traffic Networks. Transportation Research Record, 2674(9), 38-50.
Ding, R., Yin, J., Dai, P., Jiao, L., Li, R., Li, T., & Wu, J. (2019). Optimal Topology of Multilayer Urban Traffic Networks. Complexity, 2019.
Eikenbroek, O. A Still, G. J., & van Berkum, E. C. (2021). Improving the performance of a traffic system by fair rerouting of travelers. European Journal of Operational Research.Eikenbroek, O. A., Still, G. J., & van Berkum, E. C. (2021). Improving the performance of a traffic system by fair rerouting of travelers. European Journal of Operational Research.Gao, J., Barzel, B., & Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312.
Gao, J., Barzel, B., & Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312.Gao, J., Barzel, B., & Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312.
Helbing, D. (Ed.). (2012). Social self-organization: Agent-based simulations and experiments to study emergent social behavior. Springer.
Jia, H., Li, F., Yang, L., Luo, Q., & Li, Y. (2020). Dynamic Cascading Failure Analysis in Congested Urban Road Networks With Self-Organization. IEEE Access, 8, 17916-17925.Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system?. European Journal for Philosophy of Science, 3(1), 33-67.
Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system?. European Journal for Philosophy of Science, 3(1), 33-67.Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system?. European Journal for Philosophy of Science, 3(1), 33-67.
Levy, N., Klein, I., & Ben-Elia, E. (2018). Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach. Research in Transportation Economics, 68, 46-55.
Liu, W., & Song, Z. (2020). Review of studies on the resilience of urban critical infrastructure networks. Reliability Engineering & System Safety, 193, 106617.
Ma, D., Guo, R., Zheng, Y., Zhao, Z., He, F., & Zhu, W. (2020). Understanding Chinese urban form: the universal fractal pattern of street networks over 298 cities. ISPRS International Journal of Geo-Information, 9(4), 192.
Macal, C. M., & North, M. J. (2005). Validation of an agent-based model of deregulated electric power markets. In Proc. North American Computational Social and Organization Science (NAACSOS) 2005 Conference, South.
Manzo, S., Nielsen, O. A., & Prato, C. G. (2013). Investigating uncertainty in BPR formula parameters: a case study.
Melo Neto, O. de M., Santos, B. L. de F., Carvalho, F. do S. de S., Nascimento, A. M. V. do, & Silva, G. C. B. da. (2020). Urban planning: traffic feasibility near rotating through a software to improve flow of vehicles and pedestrians. Research, Society and Development, 9(7), e13973808. https://doi.org/10.33448/rsd-v9i7.3808
Moreira, L. de A., Santos, S. F. dos, Oliveira Neto, R. de, & Silva Junior, L. A. (2019). Bibliographic review of the mode of road transportation in Brazil. Research, Society and Development, 8(3), e2283728. https://doi.org/10.33448/rsd-v8i3.728
Perez, Y., & Pereira, F. H. (2021). Simulation of traffic light disruptions in street networks. Physica A: Statistical Mechanics and its Applications, 582, 126225.
Portugali, J. (2016). What makes cities complex?. In Complexity, cognition, urban planning and design (pp. 3-19). Springer, Cham.
Rambha, T., Boyles, S. D., Unnikrishnan, A., & Stone, P. (2018). Marginal cost pricing for system optimal traffic assignment with recourse under supply-side uncertainty. Transportation Research Part B: Methodological, 110, 104-121.
Salman, S., & Alaswad, S. (2018). Alleviating road network congestion: Traffic pattern optimization using Markov chain traffic assignment. Computers & Operations Research, 99, 191-205.
Serra, M., & Hillier, B. (2019). Angular and metric distance in road network analysis: A nationwide correlation study. Computers, Environment and Urban Systems, 74, 194-207.
Sharifi, A. (2019). Resilient urban forms: A macro-scale analysis. Cities, 85, 1-14.Sharifi, A. (2019). Resilient urban forms: A macro-scale analysis. Cities, 85, 1-14.Zilske, M., Neumann, A., & Nagel, K. (2015). OpenStreetMap for traffic simulation. Technische Universität Berlin.
Zilske, M., Neumann, A., & Nagel, K. (2015). OpenStreetMap for traffic simulation. Technische Universität Berlin.Zilske, M., Neumann, A., & Nagel, K. (2015). OpenStreetMap for traffic simulation. Technische Universität Berlin.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Yuri Perez; Fabio Henrique Pereira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.