Atividades biológicas e perfil químico de Batis maritima (Bataceae), uma espécie halófita com potencial para bioprospecção

Autores

DOI:

https://doi.org/10.33448/rsd-v10i16.23726

Palavras-chave:

Atividade Antioxidante; Batis maritima; Caracterização fitoquímica; Citotoxicidade; Concentração de metais.

Resumo

Halófitas são plantas tolerantes a salinidade, ricas em metabolitos com aplicação em diversas indústrias. Batis maritima é uma halófita com ocorrência em zonas tropicais e subtropicais, o presente trabalho objetivou investigar o extrato das folhas de B. maritima em uma abordagem de bioprospecção e biotecnológica. O presente estudo avaliou o perfil fitoquímico, o potencial efeito sobre a enzima acetilcolinesterase, além de propriedades protetivas de B. maritima. A análise fitoquímica evidenciou a presença de compostos fenólicos, antracenos e saponinas. O conteúdo de metal revelou o Sódio (Na) como o sal mais abundante (1g/Kg), seguido pelo alumínio (Al;0,35 g/Kg), e diversos outros elementos em concentrações menores. As metodologias de DPPH e Capacidade Antioxidante Total indicou efeito antioxidante significativo (IC50 5,17 ± 0,05 μg/mL e 0,45 ± 0,08 mg.AAEm, respectivamente). A atividade quelante de metal também foi observada, com um IC50­ de 25,76 ± 0,3 μg/mL. Além disso, o extrato aquoso de B. maritima apresentou efeito inibitório sobre a acetilcolinesterase de forma dose-dependente com IC50 de 0,0023 mg/mL. O ensaio de hemólise não revelou efeitos tóxicos, por outro lado, o ensaio de citotoxicidade, utilizando células da linhagem NIH-3T3, evidenciou uma diminuição da viabilidade celular em concentrações elevadas do extrato.

Referências

Afonne O. J. & Ifediba E. C. (2020). Heavy metals risks in plant foods – need to step up precautionary measures. Current opinion in toxicology, (22), 1-6.

Ahmed M. Q., Alenazi, F. S. H., Fazaludeen, M. F., Shahid, S. M. A., & Kausar, M. A. (2018). Pathology and Management of Alzheimer’s disease: a review. International journal of pharmaceutical research & allied sciences, (7), 30-42.

Akbari S., Abdurahman, N. H., Yunus, R. M., Alara, O. R., & Abayomi, O. O. (2018). Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Materials Science for Energy Technologies, (2), 349-355.

Barbosa, M. F. S, Miranda, P. H. O., Souza, C. A., Ramos, C. S., Melo, A. L., Rocha, J. E., Bezerra, C. F., Costa, M. S., Veras, H. N. H., Coutinho, H. D. M., Menezes, I. R. A., & Saraiva, R. A. (2021). Effect of hybrid combinations of Erythroxylum revolutum Mart. leaf ethanolic extract or alkaloid-enriched fraction with antibiotic drugs against multidrug-resistant bacteria strains. Phytomedicine plus, (100105), 1-8.

Boulaaba, M., Medini, F., Hajlaoui, H., Mkadmini, K., Falleh, H., Ksouri, R. et al. (2019). Biological activities and phytochemical analysis of phenolic extracts from Salsola kali L. role of endogenous factors in the selection of the best plant extracts. South African Journal of Botany, (123), 193-199.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, (28), 25–30.

Buhmann, A., & Papenbrock, J. (2013). An economic point of view of secondary compounds in halophytes. Functional Plant Biology, (40), 952–967.

Chintalapani, S. M. S. S., & Narasu, M. L. (2018). Phytochemical screening and in vitro antioxidant activity of whole plant extracts of Sesuvium portulacastrum L. Asian Journal of Pharmaceutical and Clinical Research, (11), 322-327.

Clemens, R. A., Jones, J. M., Kern, M., Lee, S., Mayhew, E. J., Slavin, J. L., & Zivanovic, S. (2016). Functionality of sugars in foods and health. Comprehensive reviews in food science and food safety, (15), 433-470.

Costa, L. S., Fidelis, G. P., Telles, C. B. S., Dantas-Santos, N., Camara, R. B. G., Cordeiro, S. L. et al. (2011). Antioxidant and Antiproliferative Activities of Heterofucans from the Seaweed Sargassum filipendula. Marine Drugs, (9), 952-966.

Damme, J. V., & Prez, F. D. (2018). Anthracene-containing polymers toward high-end applications. Progress in polymer science, (82), 92-119.

De, U., Chun, P., Choi, W. S., Lee, B. M., Kim, N. D., Moon, H. R. et al. (2013). A novel anthracene derivative, MHY412, induces apoptosis in doxorubicin-resistant MCF-7/Adr human breast cancer cells through cell cycle arrest and downregulation of P-glycoprotein expression. International Journal of Oncology, (44), 167–176.

Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: from 3D structures to function. Chemico-Biological Interactions, (187), 10-22.

Edziri, H., Jaziri, R., Haddad, O., Anthonissen, R., Aouni, M., Mastouri, M. et al. (2019). Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L. South African Journal of Botany, (126), 170-175.

Falleh, H., Trabelsi, N., Bonenfant-Magné, M., Le Floch, G., Abdelly, C., Magné, C. et al. (2013). Polyphenol content and biological activities of Mesembryanthemum edule organs after fractionation. Industrial Crops and Products, (42), 145–152

Ghramh, H. A., Khan, K. A., & Ibrahim, E. H. (2019). Biological Activities of Euphorbia peplus Leaves Ethanolic Extract and the Extract Fabricated Gold Nanoparticles (AuNPs). Molecules, (24), ,1431.

Hameed, A., Khan, M. A. (2011). Halophytes: Biology and economic potentials. Karachi university journal of science, (39), 40-44.

Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M. et al. (2014). Potential use of halophyte to remediate saline soils. Biomed Research international, 1-12.

Houta, O., Akrout, A., Neffati, M., & Amri, H. (2011). Phenolic contents, antioxidant and antimicrobial potentials of Crithmum maritimum cultivated in Tunisia arid zones. Journal of Biologically Active Products from Nature, (1), 138–143.

Joint FAO/WHO Expert Committee on Food Additives (JECFA). (2009). Evaluation of certain food additives. World Health Organ Technical Report Series. (952):1-208, 1 p following 208. PMID: 20112497.

Khan, H., Amin, S., Kamal, M. A., & Patel, S. (2018). Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects. Biomedicne & pharmacotherapy, (101), 860-870.

Kim, M., Jeong, E., & Lee, H. (2009). Antimicrobial effects of anthracene and its derivatives against intestinal bacteria. Bioactive materials, (52), 327-330.

Kong, C. S., Kim, Y. A., Kim, M. M., Park, J. S., Kim, J. A., Kim, S. K. et al. (2008). Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicology in Vitro, (22), 1742–1748.

Leung, S. W., Siddhanti, S., Williams, B., Chan, A. W. K., Minski, M. J., Daniels, C. K. et al. (2010). Effects of diet intake on metal and electrolyte distributions in vital organs. Procedia environmental sciences,(2), 92-97.

Li, Y., Zhang, X., Jiang, L., Yuan, L., Cao, T., Li, X. et al. (2015). Inhibition of acetylcholinesterase (AChE): a potential therapeutic target to treat alzheimer’s disease. Chemical biology & drug design, (86), 776-782.

Lonard, I. R., Judd, W. F., & Stalter, R. (2013). The biological flora of coastal dunes and wetlands: Distichlis spicata (C. Linnaeus) E. Greene. Journal of Coastal Research, (29), 105-117.

Machado, H., Nagen, T. J., Peters, V. M., & Oliveira, T. T. (2008). Flavonóides e seu potencial terapêutico. Boletim do Centro de Biologia da Reprodução, (26), 37-44.

Marcone, M. F. (2003). Batis maritima (Saltwort/Beachwort): a nutritious, halophytic, seed bearings, perennial shrub for cultivation and recovery of otherwise unproductive agricultural land affected by salinity. Food Research International, (36), 123- 130.

Marini, M., Angouria-Tsorochidou, E., Caro, D., & Thomsen, M. (2021). Daily intake of heavy metals and minerals in food – a case of study of four danish dietary profiles. Journal of cleaner production, (280) 124279.

Melo-Silveira, R., Fidelis, G., Viana, R., Soeiro, V. C., Silva, R. A., Machado, D. et al. (2014). Antioxidant and antiproliferative activities of methanolic extract from a neglected agricultural product: corn cobs. Molecules, (19), 5360–5378.

Meot-Duros, L., & Magné, C. (2009). Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiology and Biochemistry, (47), 37–41.

Milbrandt, E. C., & Tinsley, M. N. (2006). The role of saltwort (Batis maritima L.) in regeneration of degraded mangrove forests. Hydrobiology. (568), 369-377.

Mladenka, P., Macakova, K., Filipsky, T., Zatloukalova, L., Jahodar, L., Bovicelli, P. et al. (2011). In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry, (105), 693–701.

Monteiro, A. F. M., Viana, J. O., Nayariesseri, A., Zondegoumba, E. N., Mendonça-Junior, F. C. B., Scotti, M. T. et al. (2018). Computational studies applied to flavonoids against Alzheimer’s and Parkison’s diseases. Oxidative medince and cellular longevity, 21.

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops-what is the cost?. New Phytologist, (208), 668-673

Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current neuropharmacology, (11), 388-413.

Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants?. Plant physiology and biochemistry, (144), 135-143.

Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry reviews, (9), 425-474.

Prakash, S., Ramasubburayan, R., Ramkumar, V. S., Kannapiran, E., Palavesam, A., & Immanuel, G. (2016). In vitro-Scientific evaluation on antimicrobial, antioxidant, cytotoxic properties and phytochemical constituents of traditional coastal medicinal plants. Biomedicine & pharmacothepray, (83), 648-657.

Qasim, M., Abideen, Z., Adnan, M. Y., Gulzar, S., Gul, B., Rasheed, M., & Khan, M. A. (2017). Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South African Journal of Botany, (11), 240-250.

Quideau, S., Deffieux, D., Douat-Casassus, C., P& ouysegu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandt Chemie International edition, (50), 586e621.

Rodrigues, M. J., Gangadhar, K. N., Vizetto-Duarte, C., Wubshet, S. G., Nyberg, N. T., Barreira, L. et al. (2014). Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules. Marine Drugs, (12), 2228-2244.

Roseiro, L. B., Rauter, A. P., & Serralheiro, M. L. M. (2012). Polyphenols as acetylcholinesterase inhibitors: structural specificity and impact on human diseases. Nutrition and Aging, (1), 9-111.

Russo, B., Picconi, F., Malandrucco, I., & Frontoni, S. (2019). Flavonoids and insulin-resistance: from molecular evidences to clinical trials. International Journal of Molecular Sciences, (20), 2061-2078.

Santos, T. C., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & Paes, A. M. A. (2018). Naturally occurring acetylcholisnesterase inhibitors and their potential use of alzheimer’s disease therapy. Fronties in pharmacology, (9), 14.

Schardgon, R. M., Bonilla, O. H., & Santaella, S. T. (2018). Cultivo de Batis maritima, Sacorconia ambígua e Sporobolus virginicus com água residuária do cultivo de Litopenaeus vanmei. Biotema, (31), 19-32.

Schardong, R. M. F., Moro, M. F., & Bonilla, O. H. (2020). Aquaponic system with white shrimp Litopenaeus vannamei rearing and production of the plant Batis maritima, Sarconia neei and Sporobolus virginicus. Brazillian archives of biology and technology, (63), 1-12.

Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., & Singh, D. (2013). Acetylcholinestase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. European Journal of Medicinal Chemistry, (70), 165-188.

Sudhakaran, M., Sardesai, S., & Doseff, A. I. (2019). Flavonoids: new frontier for immuno-regulation and breast cancer control. Antioxidants, (8), 103-129.

Vahedi, A. (2013). The absorption and metabolism of heavy metals and mineral matters in the halophyte plant Artemisia aucheri. International journal of biology, (5), 63-70.

Ventura, J., Alarcon-Aguilar, F., Roman-Ramos, R., Campos-Sepulveda, E., Reys-Vegas, M. L., Boone-Villa, V. D., Jasso-Villagomez, E. I. et al. (2013). Quality and antioxidant properties of a reduced-sugar pomegranate juice jelly with an aqueous ectract of pomegranate peels. Food Chemistry, (136), 109-115.

Ventura, Y., Wuddineh, W. A., Myrzabayeva, M., Alikulov, Z., Khozin-Goldberg, I., Shpigel, M., & Sagi, M. (2011). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocomia halophytes as leafy vegetable crops. Scientia Horticulturae, (128), 189-196.

Zagotto, G., Supino, R., Favini, E., Moro, S., & Palumbo, M. (2000). New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents. Farmaco, (55), 1–5.

Zar, K. F., Han, J., Ksouri, R., El, O. A., Abdelly, C., & Isoda, H. (2013). Antiobesity Effects of an Edible Halophyte Nitraria retusa Forssk in 3T3-L1 Preadipocyte Differentiation and in C57B6J/L Mice Fed a High Fat Diet-Induced Obesity. Evid Based Complement Alternat Med, 368658.

Zoroddu, M. A., Aaseth, J., Crisponi, G., Medici, S., Peana, M. & Nurchi, V. M. (2019). The essentials metals for humans: a brief overview. Journal of inorganic biochemistry, (195), 120-129.

Downloads

Publicado

14/12/2021

Como Citar

SCOPEL, B. . R.; MIRANDA, P. H. O. de; SILVA, R. S. da .; ALVES, J. V. de O. .; VERAS, B. O. de; AMORIM, L. C.; ROSA, M. M. da; BARBOSA, J. I. de S.; MELO, M. R. C. S. de .; BEZERRA, R. de S. .; SILVA, M. V. da . Atividades biológicas e perfil químico de Batis maritima (Bataceae), uma espécie halófita com potencial para bioprospecção. Research, Society and Development, [S. l.], v. 10, n. 16, p. e391101623726, 2021. DOI: 10.33448/rsd-v10i16.23726. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23726. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas