Efeitos da privação de sono em adultos saudáveis: uma revisão sistemática
DOI:
https://doi.org/10.33448/rsd-v10i16.23887Palavras-chave:
Privação de sono; Adultos; Neurobiologia; Exercício físico; Fenômenos fisiológicos.Resumo
Atualmente, devido ao estilo de vida contemporâneo, os indivíduos têm apresentado uma redução no número de horas de sono diário, isso gera impactos fisiológicos, psicológicos, comportamentais e permanentes na saúde da população. Nosso principal objetivo foi investigar essas consequências na saúde de indivíduos saudáveis. Foi realizada uma revisão sistemática em bancos de dados seguindo o protocolo PRISMA e as diretrizes do Chrocraine Handbook. Foram selecionados 27 artigos que serviram como base para esse estudo, nos seguintes eixos: endocrinologia, desempenho, neurociência e alterações fisiológicas. Diante dos diversos efeitos nocivos encontrados, mais estudos dentro dessas áreas devem ser realizados, com análises mais profundas dos efeitos da privação do sono na saúde de adultos saudáveis.
Referências
Abedelmalek, S., Souissi, N., Chtourou, H., Denguezli, M., Aouichaoui, C., Ajina, M., Aloui, A., Dogui, M., Haddouk, S., & Tabka, Z. (2013). Effects of Partial Sleep Deprivation on Proinflammatory Cytokines, Growth Hormone, and Steroid Hormone Concentrations During Repeated Brief Sprint Interval Exercise. Chronobiology International, 30(4), 502–509. https://doi.org/10.3109/07420528.2012.742102
Alves, B. / O. / O.-M. (2021). DeCS - Descritores em Ciências da Saúde. Recuperado 18 de julho de 2021, de https://decs.bvsalud.org/en/
Bocca, M. L., Marie, S., & Chavoix, C. (2014). Impaired inhibition after total sleep deprivation using an antisaccade task when controlling for circadian modulation of performance. Physiology & Behavior, 124, 123–128. https://doi.org/10.1016/j.physbeh.2013.10.024
Borragán, G., Urbain, C., Schmitz, R., Mary, A., & Peigneux, P. (2015). Sleep and memory consolidation: Motor performance and proactive interference effects in sequence learning. Brain and Cognition, 95, 54–61. https://doi.org/10.1016/j.bandc.2015.01.011
Broussard, J. L., Kilkus, J. M., Delebecque, F., Abraham, V., Day, A., Whitmore, H. R., & Tasali, E. (2016). Elevated ghrelin predicts food intake during experimental sleep restriction: Sleep Restriction, Ghrelin, and Food Intake. Obesity, 24(1), 132–138. https://doi.org/10.1002/oby.21321
Cedernaes, J., Brandell, J., Ros, O., Broman, J., Hogenkamp, P. S., Schiöth, H. B., & Benedict, C. (2014). Increased impulsivity in response to food cues after sleep loss in healthy young men. Obesity, 22(8), 1786–1791. https://doi.org/10.1002/oby.20786
Chattu, V., Manzar, Md., Kumary, S., Burman, D., Spence, D., & Pandi-Perumal, S. (2018). The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare, 7(1), 1. https://doi.org/10.3390/healthcare7010001
Chen, J., Liang, J., Lin, X., Zhang, Y., Zhang, Y., Lu, L., & Shi, J. (2017). Sleep Deprivation Promotes Habitual Control over Goal-Directed Control: Behavioral and Neuroimaging Evidence. The Journal of Neuroscience, 37(49), 11979–11992. https://doi.org/10.1523/JNEUROSCI.1612-17.2017
Cirelli, C. (2021). Insufficient sleep: Definition, epidemiology, and adverse outcomes. In Benca, R., Eichler, A.F., (Ed.), UpToDate. Acessado em novembro 18, 2021, por https://www.uptodate.com/contents/insufficient-sleep-definition-epidemiology-and-adverse-outcomes?search=sleep%20deprivation&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1.
Cullen, T., Thomas, G., & Wadley, A. J. (2020). Sleep Deprivation: Cytokine and Neuroendocrine Effects on Perception of Effort. Medicine & Science in Sports & Exercise, 52(4), 909–918. https://doi.org/10.1249/MSS.0000000000002207
Dáttilo, M., Antunes, H. K. M., Galbes, N. M. N., Mônico-Neto, M., De Sá Souza, H., Dos Santos Quaresma, M. V. L., Lee, K. S., Ugrinowitsch, C., Tufik, S., & De Mello, M. T. (2020). Effects of Sleep Deprivation on Acute Skeletal Muscle Recovery after Exercise. Medicine & Science in Sports & Exercise, 52(2), 507–514. https://doi.org/10.1249/MSS.0000000000002137
Daviaux, Y., Mignardot, J.-B., Cornu, C., & Deschamps, T. (2014). Effects of total sleep deprivation on the perception of action capabilities. Experimental Brain Research, 232(7), 2243–2253. https://doi.org/10.1007/s00221-014-3915-z
Dimitrov, S., Besedovsky, L., Born, J., & Lange, T. (2015). Differential acute effects of sleep on spontaneous and stimulated production of tumor necrosis factor in men. Brain, Behavior, and Immunity, 47, 201–210. https://doi.org/10.1016/j.bbi.2014.11.017
Elvsåshagen, T., Norbom, L. B., Pedersen, P. Ø., Quraishi, S. H., Bjørnerud, A., Malt, U. F., Groote, I. R., & Westlye, L. T. (2015). Widespread Changes in White Matter Microstructure after a Day of Waking and Sleep Deprivation. PLOS ONE, 10(5), e0127351. https://doi.org/10.1371/journal.pone.0127351
Fang, Z., Spaeth, A. M., Ma, N., Zhu, S., Hu, S., Goel, N., Detre, J. A., Dinges, D. F., & Rao, H. (2015). Altered salience network connectivity predicts macronutrient intake after sleep deprivation. Scientific Reports, 5(1), 8215. https://doi.org/10.1038/srep08215
Giacobbo, B. L., Corrêa, M. S., Vedovelli, K., de Souza, C. E. B., Spitza, L. M., Gonçalves, L., Paludo, N., Molina, R. D., da Rosa, E. D., Argimon, I. I. de L., & Bromberg, E. (2016). Could BDNF be involved in compensatory mechanisms to maintain cognitive performance despite acute sleep deprivation? An exploratory study. International Journal of Psychophysiology, 99, 96–102. https://doi.org/10.1016/j.ijpsycho.2015.11.008
Glos, M., Fietze, I., Blau, A., Baumann, G., & Penzel, T. (2014). Cardiac autonomic modulation and sleepiness: Physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness. Physiology & Behavior, 125, 45–53. https://doi.org/10.1016/j.physbeh.2013.11.011
Griessenberger, H., Hoedlmoser, K., Heib, D. P. J., Lechinger, J., Klimesch, W., & Schabus, M. (2012). Consolidation of temporal order in episodic memories. Biological Psychology, 91(1), 150–155. https://doi.org/10.1016/j.biopsycho.2012.05.012
Hanlon, E. C., Tasali, E., Leproult, R., Stuhr, K. L., Doncheck, E., de Wit, H., Hillard, C. J., & Van Cauter, E. (2016). Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol. Sleep, 39(3), 653–664. https://doi.org/10.5665/sleep.5546
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). COCHRANE HANDBOOK FOR SYSTEMATIC REVIEWS OF INTERVENTIONS version 6.2 (updated February 2021). Cochrane, 2021. Available from www.training.cochrane.org/handbook.
Ingram, L. A., Simpson, R. J., Malone, E., & Florida-James, G. D. (2015). Sleep disruption and its effect on lymphocyte redeployment following an acute bout of exercise. Brain, Behavior, and Immunity, 47, 100–108. https://doi.org/10.1016/j.bbi.2014.12.018
Jauch-Chara, K., Hallschmid, M., Schmid, S. M., Bandorf, N., Born, J., & Schultes, B. (2010). Sleep loss does not aggravate the deteriorating effect of hypoglycemia on neurocognitive function in healthy men. Psychoneuroendocrinology, 35(4), 624–628. https://doi.org/10.1016/j.psyneuen.2009.09.018
Konishi, M., Takahashi, M., Endo, N., Numao, S., Takagi, S., Miyashita, M., Midorikawa, T., Suzuki, K., & Sakamoto, S. (2013). Effects of sleep deprivation on autonomic and endocrine functions throughout the day and on exercise tolerance in the evening. Journal of Sports Sciences, 31(3), 248–255. https://doi.org/10.1080/02640414.2012.733824
Lamon, S., Morabito, A., Arentson‐Lantz, E., Knowles, O., Vincent, G. E., Condo, D., Alexander, S. E., Garnham, A., Paddon‐Jones, D., & Aisbett, B. (2021). The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiological Reports, 9(1). https://doi.org/10.14814/phy2.14660
Lim, J., Tan, J. C., Parimal, S., Dinges, D. F., & Chee, M. W. L. (2010). Sleep Deprivation Impairs Object-Selective Attention: A View from the Ventral Visual Cortex. PLoS ONE, 5(2), e9087. https://doi.org/10.1371/journal.pone.0009087
Medic, G., Wille, M., & Hemels, M. (2017). Short- and long-term health consequences of sleep disruption. Nature and Science of Sleep, Volume 9, 151–161. https://doi.org/10.2147/NSS.S134864
Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., & Mulrow, C. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.
Rault, C., Sangaré, A., Diaz, V., Ragot, S., Frat, J.-P., Raux, M., Similowski, T., Robert, R., Thille, A. W., & Drouot, X. (2020). Impact of Sleep Deprivation on Respiratory Motor Output and Endurance. A Physiological Study. American Journal of Respiratory and Critical Care Medicine, 201(8), 976–983. https://doi.org/10.1164/rccm.201904-0819OC
Saksvik-Lehouillier, I., Saksvik, S. B., Dahlberg, J., Tanum, T. K., Ringen, H., Karlsen, H. R., Smedbøl, T., Sørengaard, T. A., Stople, M., Kallestad, H., & Olsen, A. (2020). Mild to moderate partial sleep deprivation is associated with increased impulsivity and decreased positive affect in young adults. Sleep, 43(10), zsaa078. https://doi.org/10.1093/sleep/zsaa078
Sweeney, E. L., Jeromson, S., Hamilton, D. L., Brooks, N. E., & Walshe, I. H. (2017). Skeletal muscle insulin signaling and whole-body glucose metabolism following acute sleep restriction in healthy males. Physiological Reports, 5(23), e13498. https://doi.org/10.14814/phy2.13498
Tajiri, E., Yoshimura, E., Hatamoto, Y., Tanaka, H., & Shimoda, S. (2018). Effect of sleep curtailment on dietary behavior and physical activity: A randomized crossover trial. Physiology & Behavior, 184, 60–67. https://doi.org/10.1016/j.physbeh.2017.11.008
Temesi, J., Arnal, P. J., Davranche, K., Bonnefoy, R., Levy, P., Verges, S., & Millet, G. Y. (2013). Does Central Fatigue Explain Reduced Cycling after Complete Sleep Deprivation? Medicine & Science in Sports & Exercise, 45(12), 2243–2253. https://doi.org/10.1249/MSS.0b013e31829ce379
Wilms, B., Kuhr, M., Chamorro, R., Klinsmann, N., Spyra, D., Mölle, M., Kalscheuer, H., Schultes, B., Lehnert, H., & Schmid, S. M. (2020). Chronobiological aspects of sleep restriction modulate subsequent spontaneous physical activity. Physiology & Behavior, 215, 112795. https://doi.org/10.1016/j.physbeh.2019.112795
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Luiz Guilherme Figueira; Igor Valentini Zanella; Mariana Fagundes; Cesar Basso do Nascimento; José Carlos de Souza
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.