Resistência a antimicrobianos e sua correlação estatística com o consumo em hospitais: Uma revisão integrativa da literatura
DOI:
https://doi.org/10.33448/rsd-v11i1.24058Palavras-chave:
Testes de sensibilidade microbiana; Uso racional de medicamentos; Estudos de correlação; Resistência bacteriana a antibióticos.Resumo
Esta revisão integrativa teve por objetivo determinar quais são as principais bactérias que possuem correlações positivas entre o aumento do consumo de antimicrobianos e o aumento da resistência bacteriana em âmbito hospitalar. Resumiram-se os artigos, através de revisão integrativa, encontrados nas bases Pubmed® e Embase®, utilizando as seguintes estratégias de busca: (("Microbial Sensitivity Tests"[Mesh]) AND "Hospitals"[Mesh]) AND "Drug Utilization"[Mesh] e 'drug utilization'exp AND 'hospital'exp AND 'antibiotic sensitivity'exp, respectivamente. Sintetizando o autor, ano de publicação, local de estudo, população estudada, metodologia de avaliação do consumo e da relação estatística e as correlações positivas encontradas entre as espécies ou gêneros bacterianos associados com os dados de consumo de uma determinada classe de antimicrobianos. As estratégias de busca encontraram no total 414 artigos, sendo que após a aplicação dos critérios de inclusão restaram 10 artigos que atendiam a todos os critérios utilizados. As principais bactérias ou gêneros bacterianos envolvidos com correlações positivas foram P. aeruginosa (42,6%), E. coli (24,1%) e Acinetobacter spp. (9,3%). A maioria das correlações positivas encontradas foram relacionadas a mesma classe, todavia cerca de 48,2% foram cruzadas. Destacaram-se a P. aeruginosa, E. coli e o gênero Acinetobacter spp., como as bactérias com maiores quantidade de correlações positivas. Bancos de dados internacionais como o GLASS, podem fortalecer a evidência estatística dessa relação, permitindo amostras maiores e mais diversas, contudo eles dependem de cooperação internacional. Esse trabalho pode amparar a farmacovigilância em hospitais destacando correlações já elucidadas, ao qual podem contribuir na otimização dos recursos.
Referências
Barrett, T. C., Mok, W. W. K., Murawski, A. M., & Brynildsen, M. P. (2019). Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nature Communications, 10(1), 1177. https://doi.org/10.1038/s41467-019-09058-4
Bell, B. G., Schellevis, F., Stobberingh, E., Goossens, H., & Pringle, M. (2014). A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infectious Diseases, 14(1), 13. https://doi.org/10.1186/1471-2334-14-13
Chandy, S. J., Naik, G. S., Balaji, V., Jeyaseelan, V., Thomas, K., & Lundborg, C. S. (2014). High cost burden and health consequences of antibiotic resistance: the price to pay. The Journal of Infection in Developing Countries, 8(09), 1096–1102. https://doi.org/10.3855/jidc.4745
Davey, P., Marwick, C. A., Scott, C. L., Charani, E., McNeil, K., Brown, E., Gould, I. M., Ramsay, C. R., & Michie, S. (2017). Interventions to improve antibiotic prescribing practices for hospital inpatients. The Cochrane Database of Systematic Reviews, 2, CD003543. https://doi.org/10.1002/14651858.CD003543.pub4
Dellit, T. H., Owens, R. C., McGowan, J. E., Gerding, D. N., Weinstein, R. A., Burke, J. P., Huskins, W. C., Paterson, D. L., Fishman, N. O., Carpenter, C. F., Brennan, P. J., Billeter, M., & Hooton, T. M. (2007). Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clinical Infectious Diseases, 44(2), 159–177. https://doi.org/10.1086/510393
Eagye, K. J., & Nicolau, D. P. (2011). Change in antipseudomonal carbapenem susceptibility in 25 hospitals across 9 years is not associated with the use of ertapenem. Journal of Antimicrobial Chemotherapy, 66(6), 1392–1395. https://doi.org/10.1093/jac/dkr141
Erdeljić, V., Francetić, I., Bošnjak, Z., Budimir, A., Kalenić, S., Bielen, L., Makar-Aušperger, K., & Likić, R. (2011). Distributed lags time series analysis versus linear correlation analysis (Pearson’s r) in identifying the relationship between antipseudomonal antibiotic consumption and the susceptibility of Pseudomonas aeruginosa isolates in a single Intensive Care Unit. International Journal of Antimicrobial Agents, 37(5), 467–471. https://doi.org/10.1016/j.ijantimicag.2010.11.030
Falagas, M. E., & Kopterides, P. (2006). Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. Journal of Hospital Infection, 64(1), 7–15. https://doi.org/10.1016/j.jhin.2006.04.015
Fleming Fund. (2021). Aims & Values. 2021. https://www.flemingfund.org/about-us/our-aims/
Fukuda, H., Hosaka, M., Hirai, K., & Iyobe, S. (1990). New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrobial Agents and Chemotherapy, 34(9), 1757–1761. https://doi.org/10.1128/AAC.34.9.1757
Gallini, A., Degris, E., Desplas, M., Bourrel, R., Archambaud, M., Montastruc, J. L., Lapeyre-Mestre, M., & Sommet, A. (2010). Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. Journal of Antimicrobial Chemotherapy, 65(12), 2650–2657. https://doi.org/10.1093/jac/dkq351
Guo, W., He, Q., Wang, Z., Wei, M., Yang, Z., Du, Y., Wu, C., & He, J. (2015). Influence of antimicrobial consumption on gram-negative bacteria in inpatients receiving antimicrobial resistance therapy from 2008-2013 at a tertiary hospital in Shanghai, China. American Journal of Infection Control, 43(4), 358–364. https://doi.org/10.1016/j.ajic.2014.12.010
Hanberger, H., Diekema, D., Fluit, A., Jones, R., Struelens, M., Spencer, R., & Wolff, M. (2001). Surveillance of antibiotic resistance in European ICUs. Journal of Hospital Infection, 48(3), 161–176. https://doi.org/10.1053/jhin.2001.0987
Hayes, A. F., & Montoya, A. K. (2017). A Tutorial on Testing, Visualizing, and Probing an Interaction Involving a Multicategorical Variable in Linear Regression Analysis. Communication Methods and Measures, 11(1), 1–30. https://doi.org/10.1080/19312458.2016.1271116
Hirai, K., Suzue, S., Irikura, T., Iyobe, S., & Mitsuhashi, S. (1987). Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 31(4), 582–586. https://doi.org/10.1128/AAC.31.4.582
Hsu, L.-Y., Tan, T.-Y., Tam, V. H., Kwa, A., Fisher, D. A., & Koh, T.-H. (2010). Surveillance and Correlation of Antibiotic Prescription and Resistance of Gram-Negative Bacteria in Singaporean Hospitals. Antimicrobial Agents and Chemotherapy, 54(3), 1173–1178. https://doi.org/10.1128/AAC.01076-09
Jacoby, T. S., Kuchenbecker, R. S., dos Santos, R. P., Magedanz, L., Guzatto, P., & Moreira, L. B. (2010). Impact of hospital-wide infection rate, invasive procedures use and antimicrobial consumption on bacterial resistance inside an intensive care unit. Journal of Hospital Infection, 75(1), 23–27. https://doi.org/10.1016/j.jhin.2009.11.021
Jiang, X.-T., Ye, L., Ju, F., Wang, Y.-L., & Zhang, T. (2018). Toward an Intensive Longitudinal Understanding of Activated Sludge Bacterial Assembly and Dynamics. Environmental Science & Technology, 52(15), 8224–8232. https://doi.org/10.1021/acs.est.7b05579
Kuo, S.-C., Chang, S.-C., Wang, H.-Y., Lai, J.-F., Chen, P.-C., Shiau, Y.-R., Huang, I.-W., & Lauderdale, T.-L. Y. (2012). Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: Nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infectious Diseases, 12(1), 200. https://doi.org/10.1186/1471-2334-12-200
Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(S12), S122–S129. https://doi.org/10.1038/nm1145
Loeffler, J. M., Garbino, J., Lew, D., Harbarth, S., & Rohner, P. (2003). Antibiotic Consumption, Bacterial Resistance and their Correlation in a Swiss University Hospital and its Adult Intensive Care Units. Scandinavian Journal of Infectious Diseases, 35(11–12), 843–850. https://doi.org/10.1080/00365540310016646
MacAdam, H., Zaoutis, T. E., Gasink, L. B., Bilker, W. B., & Lautenbach, E. (2006). Investigating the association between antibiotic use and antibiotic resistance: impact of different methods of categorising prior antibiotic use. International Journal of Antimicrobial Agents, 28(4), 325–332. https://doi.org/10.1016/j.ijantimicag.2006.04.014
Miliani, K., L’Hériteau, F., Lacavé, L., Carbonne, A., & Astagneau, P. (2011). Imipenem and ciprofloxacin consumption as factors associated with high incidence rates of resistant Pseudomonas aeruginosa in hospitals in northern France. Journal of Hospital Infection, 77(4), 343–347. https://doi.org/10.1016/j.jhin.2010.11.024
Monsen, T., Rönnmark, M., Olofsson, C., & Wiström, J. (1999). Antibiotic susceptibility of staphylococci isolated in blood cultures in relation to antibiotic consumption in hospital wards. Scandinavian Journal of Infectious Diseases, 31(4), 399–404. https://doi.org/10.1080/00365549950163860
Muraki, Y., Kitamura, M., Maeda, Y., Kitahara, T., Mori, T., Ikeue, H., Tsugita, M., Tadano, K., Takada, K., Akamatsu, T., Yamada, T., Yamada, T., Shiraishi, T., & Okuda, M. (2013). Nationwide surveillance of antimicrobial consumption and resistance to Pseudomonas aeruginosa isolates at 203 Japanese hospitals in 2010. Infection, 41(2), 415–423. https://doi.org/10.1007/s15010-013-0440-0
Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12
Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N., & Bonomo, R. A. (2007). Global Challenge of Multidrug-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 51(10), 3471–3484. https://doi.org/10.1128/AAC.01464-06
Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6(4). https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
Sousa, D., Castelo-Corral, L., Gutierrez-Urbon, J.-M., Molina, F., Lopez-Calvino, B., Bou, G., & Llinares, P. (2013). Impact of ertapenem use on Pseudomonas aeruginosa and Acinetobacter baumannii imipenem susceptibility rates: collateral damage or positive effect on hospital ecology? Journal of Antimicrobial Chemotherapy, 68(8), 1917–1925. https://doi.org/10.1093/jac/dkt091
Tacconelli, E., De Angelis, G., Cataldo, M. A., Mantengoli, E., Spanu, T., Pan, A., Corti, G., Radice, A., Stolzuoli, L., Antinori, S., Paradisi, F., Carosi, G., Bernabei, R., Antonelli, M., Fadda, G., Rossolini, G. M., & Cauda, R. (2009). Antibiotic usage and risk of colonization and infection with antibiotic-resistant bacteria: a hospital population-based study. Antimicrobial Agents and Chemotherapy, 53(10), 4264–4269. https://doi.org/10.1128/AAC.00431-09
The World Bank. (2021). DataBank. The World Bank. https://databank.worldbank.org/home.aspx
UNDP. (2018). Human Development Indices and Indicators. In United Nations Development Programme (UNDP).
WEF. (2013). Global Risks 2013: Eighth Edition. WHO. http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2013.pdf
Wertheimer, A. I. (1986). The defined daily dose system (DDD) for drug utilization review. Hospital Pharmacy, 21(3), 258, 233-4, 239-41. http://europepmc.org/abstract/MED/10317694
WHO. (2014). Antimicrobial resistance: global report on surveillance 2014. In World Health Organization. https://apps.who.int/iris/handle/10665/112642
WHO. (2015). Global Action Plan: on Antimicrobial Resistance. WHO. https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1
WHO. (2019). Definition and general considerations. World Health Organization. https://www.whocc.no/ddd/definition_and_general_considera/
WHO. (2020). GLASS Early Implementation Report: 2020. WHO. https://www.who.int/glass/resources/publications/early-implementation-report-2020/en/
WHO. (2021a). ATC/DDD Index 2021. World Health Organization. https://www.whocc.no/atc_ddd_index/WHO. (2021b). Global Antimicrobial Resistance Surveillance System (GLASS). WHO. https://www.who.int/glass/en/
Xu, J., Sun, Z., Li, Y., & Zhou, Q. (2013). Surveillance and Correlation of Antibiotic Consumption and Resistance of Acinetobacter baumannii complex in a Tertiary Care Hospital in Northeast China, 2003–2011. International Journal of Environmental Research and Public Health, 10(4), 1462–1473. https://doi.org/10.3390/ijerph10041462
Zou, Y. M., Ma, Y., Liu, J. H., Shi, J., Fan, T., Shan, Y. Y., Yao, H. P., & Dong, Y. L. (2015). Trends and correlation of antibacterial usage and bacterial resistance: time series analysis for antibacterial stewardship in a Chinese teaching hospital (2009–2013). European Journal of Clinical Microbiology & Infectious Diseases, 34(4), 795–803. https://doi.org/10.1007/s10096-014-2293-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Paulo Monteiro Araujo; Carina da Costa Braúna; Susan Catherine Lima Lemos; Duanne Mendes Gomes; Veridiana Rebelo dos Santos; Sávio Freire da Silva; Luciano da Silva Lopes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.