Instrumentação aplicada em máquinas agrícolas: revisão sistemática da literatura
DOI:
https://doi.org/10.33448/rsd-v10i17.24247Palavras-chave:
Agricultura; Agricultura de precisão; Instrumentação agrícola; Máquinas agrícolas.Resumo
Afim de analisar as publicações acerca da utilização da instrumentação na agricultura, o objetivo deste trabalho é apresentar um conjunto de trabalhos publicados entres os anos de 2017 e 2021 sobre o tema para que se possa realizar uma análise das tecnologias desenvolvidas neste período. Para isso foi realizada uma busca nas bases de dados IEEE, Science Direct e Scopus onde, a partir de String de busca para selecionar trabalhos considerando tema, ano de publicação, foram encontrados 1490 artigos publicados. Diante deste resultado foi utilizado o software Start para aplicar critérios de seleção para escolha dos artigos a ser utilizados na revisão. Depois de executadas todas as etapas de seleção dos trabalhos no software o resultado foram 33 artigos realização da Revisão Sistemática. Dos 33 artigos são apresentados os métodos de trabalho e o resultado obtido pelo autor e assim possibilitando uma análise das tecnologias pesquisadas ao logo do período de estudo.
Referências
AzmI, M. A. Mohammad, R. & Pebrian, D. E. (2020). Evaluation Of Soil EC Mapping Driven By Manual And Autopilot-Automated Steering Systems Of Tractor On Oil Palm Plantation Terrain, Food Research, 4(5), 62 – 69.
Conforto, E.C. Amaral, D.C. & Silva, S.L. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projeto. In: Congresso Brasileiro De Gestão De Desenvolvimento De Produto – CBGDP, 8, Anais... Porto Alegre, RS.
Dusadeerungsikul, P. O. & NOF, S. Y. (2019). A collaborative control protocol for agricultural robot routing with online adaptation, Computers Industrial Engineering, 135, 456-466.
Espejo, G. B. Martinez, G. J. Pérez, R. M. Lopez, P. F.J. & Javier, Z. F. (2018). Machine learning for automatic rule classification of agricultural regulations: a case study in Spain. Comput Electron Agric. 150: 343–352.
Gupta, C. Tewari, V.K. Kumar, A. A. & Shrivastava, P. (2019). Automatic tractor slip-draft embedded control system, Computers and Electronics in Agriculture, 165.
Han, X. Kim, H. Jeon, C. W. Moon, H. C. Kim, J. H. & Yi, S. Y. (2019). Application of a 3D tractor-driving simulator for slip estimation-based path-tracking control of auto-guided tillage operation, Biosystems Engineering, 178, 70-85.
Inoue, K. Kaizu, Y. Igarashi, S. & Imou, K. (2019). The development of autonomous navigation and obstacle avoidance for a robotic mower using machine vision technique, IFAC-PapersOnLine, 52(30), 173-177.
İrsel, G. M.; & Altinbalik, T. (2018). Adaptation of tilt adjustment and tracking force automation system on a laser-controlled land leveling machine, Computers and Electronics in Agriculture, 150, 374-386.
Kim, J. Kim, S. Ju, C. & Son, H. I. (2019). Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications, IEEE Access, 7, 105100-105115.
Kim, Y Chung, S., & Choi, C.H. (2018). Development of automation technology for manual transmission of a 50 HP autonomous tractor. IFAC-PapersOnLine. 51. 20-22.
Kumar, A. A. Tewari, V.K. Nare, B. Chetan, C.R. Srivastava, P. & Kumar, S. P. (2017). Embedded Digital Drive Wheel Torque Indicator For Agricultural 2WD Tractors. Computers and electronics in agriculture, 139, 91-102.
Lee, J. Kim, H. Cho, B Choi, J., & Kim, Y. (2018). Road Bump Detection Using LiDAR sensor for Semi-Active Control of Front Axle Suspension in an Agricultural Tractor. IFAC-PapersOnLine. 51, 124-129.
Li, S. Xu, H. Ji, Y. Cao, R Zhang, M. & Li, H. (2019). Development of a following agricultural machinery automatic navigation system, Comput. Electron. Agricult., 158, 335-344.
Lu, W. Wei, Y. Yuan, J. Deng, Y. & Song, A. (2020). Tractor Assistant Driving Control Method Based on EEG Combined With RNN-TL Deep Learning Algorithm, IEEE Access, 8, 163269-163279.
Mccool, C. S. Perez, T. & Upcroft, B. (2017). Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics, IEEE Robotics and Automation Letters. 2, 1344-1351.
Mattetti, M. Molari, G. & Sereni, E. (2017). Damage Evaluation Of Driving Events For Agricultural Tractors. Computers and Electronics in Agriculture, 135, 328–337.
Mattetti, M. Maraldi, M. Lenzini, N. Fiorati, S. Sereni. E. & Molari, G. (2021). Outlining the mission profile of agricultural tractors through CAN-BUS data analytics, Computers and Electronics in Agriculture, 184, 106078.
Mattetti, M Maraldi, M Sedoni, E., & Molari, G. (2019). Optimal criteria for durability test of stepped transmissions of agricultural tractors, Biosystems Engineering, 178, 145-155.
ONU. (2021). Objetivos de Desenvolvimento Sustentável (ODS), Pacto Global, Disponível em: https://www.pactoglobal.org.br/ods.
Pasternak, G. Greenman, J. & Ieropoulos, I. (2017). Self-Powered, Autonomous Biological Oxygen Demand Biosensor For Online Water Quality Monitoring. Sensors Actuators B Chemical. 244, 815-822.
Perz, R. & Wronowski, K. (2018). UAV application for precision agriculture, Aircraft Engineering and Aerospace Technology, 91, 257-263.
Rajabi-Vandechali, M. Abbaspour-Fard, M. & Rohani, A. (2018). Development of a prediction model for estimating tractor engine torque based on soft computing and low cost sensors. Measurement. 121, 83-95.
Rajkumar, S. Arun M. Hirwani, J. & Sanjeev, S. (2018). Predictive analysis of crops cultivation for a smart green environment using azure services. International Journal of Recent Technology and Engineering (IJRTE). 7, 295-298.
Raikwar, S. Wani, L. J. Kumar, S. A. & Rao, M. S. (2019). Hardware-in-the-Loop test automation of embedded systems for agricultural tractors, Measurement, 133, 271-280.
Ranjbarian, S.; Askari, M.; & Jannatkhah, J. (2017) Performance of tractor and tillage implements in clay soil. Journal of the Saudi Society of Agricultural Sciences, 16(2), 154-162.
Shafaei, S.M. Loghavi, M. & Kamgar, S. (2019). A practical effort to equip tractor-implement with fuzzy depth and draft control system, Engineering in Agriculture, Environment and Food, 12(2), 191-203.
Shafaei, S.M. Loghavi, M. & Kamgar, S. (2020). Benchmark of an intelligent fuzzy calculator for admissible estimation of drawbar pull supplied by mechanical front wheel drive tractor, Artificial Intelligence in Agriculture, 4, 209-218.
Soylu, S. Çarman, K. (2021). Fuzzy logic based automatic slip control system for agricultural tractors, Journal of Terramechanics, 95, 25-32.
Spykman, O. Gabriel, A. Ptacek, M. & Gandorfer, M. (2021). Farmers’ perspectives on field crop robots – Evidence from Bavaria, Germany, Computers and Electronics in Agriculture, 186, 106176.
Sulistyo, S.B. Wu, D. Woo, W.L. Dlay, S. S. & Gao, B. (2017). Computational Deep Intelligence Vision Sensing For Nutrient Content Estimation In Agricultural Automation. IEEE Transactions on Automation Science and Engineering, 15, 1243-1257.
Tufail, M. Iqbal, J. Tiwana, M. I. Alam, M. S. Khan, Z. A. & Khan, M. T. (2021) Identification of Tobacco Crop Based on Machine Learning for a Precision Agricultural Sprayer, IEEE Access, 9, 23814-23825.
Yalei, W. Lijun, Q. & Hao, Z. (2018). Design and experiment of remote intelligent spray control system based on embedded internet. Trans. Chin. Soc. Agric. Eng. 34(20), 28–35.
Yang, Q. Huang, G. Shi, X. He, M. Ahmad, I. Zhao, X. & Addy, M. (2020) Design of a control system for a mini-automatic transplanting machine of plug seedling, Computers and Electronics in Agriculture, 169.
Zhang, S. Wang, Y. Zhu, Z. Li, Z. Du, Y. & Mao, E. (2018). Tractor Path Tracking Control Based on Binocular Vision. Information Processing in Agriculture, 5, 422-432.
Zhao, H. Zhou, S. Chen, W. Miao, Z. & Liu, Y. H. (2021). Modeling and Motion Control of Industrial Tractor–Trailers Vehicles Using Force Compensation, IEEE/ASME Transactions on Mechatronics, 26(2), 645-656.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Thiago Santana Aranha; Mario Mollo Neto; Mariana Matulovic da Silva Rodrigueiro; Flávio José de Oliveira Morais; Paulo Sérgio Barbosa dos Santos
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.