Valorização da lama do beneficiamento de rochas ornamentais em pavimentos flexíveis

Autores

DOI:

https://doi.org/10.33448/rsd-v11i1.25404

Palavras-chave:

Resíduo sólido industrial; Lama do beneficiamento de rochas ornamentais; Fíler; Concreto betuminoso usinado à quente.

Resumo

O objetivo desse estudo é avaliar a incorporação de lama do beneficiamento de rochas ornamentais como material de enchimento, através de substituições parciais de materiais convencionais, em concreto betuminoso usinado à quente. Foram investigadas as características físico-químicas do resíduo e demais agregados que compõem a mistura asfáltica, seguido do desenvolvimento de formulações para execução do teste de resistência mecânica pelo método Marshall. Os resultados evidenciam que a substituição de materiais naturais por resíduos de rochas ornamentais melhora ligeiramente as propriedades físicas e mecânicas das misturas betuminosas. Concluiu-se, portanto, que a lama do beneficiamento de rochas ornamentais apresenta potencial de utilização e pode ser um material promissor a ser utilizado pela indústria da pavimentação, evitando assim a extração mineral de recursos naturais não renováveis.

Referências

Aljassar, A. H., Metwalli, S., & Ali, M. A. (2004). Effect of Filler Types on Marshall Stability and Retained Strength of Asphalt Concrete. International Journal of Pavement Engineering, 5, 47-51.

Amaral, L.F., Carvalho, R. P. R. G., Silva, B. M., Delaqua, D. C. G., Monteiro, S. N., & Vieira, C. M. F. (2019). Development of ceramic paver with ornamental rock waste. Journal of Materials Research and Technology, 8, 599-608.

American Society for Testing and Materials. (2005). ASTM D4791: Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate.

Arab, P. B., Araujo, T. P., & Pejon, O. J. (2015). Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Applied Clay Science, 114, 133-140.

Asphalt Institute. (2001). HMA Construction. Manual Series No. 22.

Associação Brasileira de Normas Técnicas. (2016). NBR 7180: Solo – Determinação do limite de plasticidade.

Associação Brasileira de Normas Técnicas. (2017). NBR 6459: Solo – Determinação do limite de liquidez.

Barra, B., Momm, L., Guerrero, Y., & Bernucci, L. (2014). Characterization of granite and limestone powders for use as fillers in bituminous mastics dosage. Anais da Academia Brasileira de Ciências, 86, 995-1002.

Behl, A., Kumar, G., Sharma, G., & Jain, P. K. (2013). Evaluation of field performance of warm-mix asphalt pavements in India. Procedia - Social and Behavioral Sciences, 104, 158-167.

Chandra, S., & Choudhary, R. (2013). Performance characteristics of bituminous concrete with industrial wastes as filler. Journal of Materials in Civil Engineering, 25, 1666-1673.

Chen, H., & Xu, Q. (2010). Experimental study of fibers in stabilizing and reinforcing asphalt binder. Fuel, 89, 1616-1622.

Cia. (2017). Available From: https://www.cia.gov/library/publications/the-worldfactbook/ rankorder/2085rank.html.

Crispino, M., Mariani, E., & Toraldo, E. (2013). Assessment of fiber-reinforced bituminous mixtures compaction temperatures through mastics viscosity tests Construction and Building Materials, 38, 1031-1039.

Departamento Nacional de Estradas de Rodagem. (1995). DNER-ME 043: Mistura betuminosas a quente – Ensaio Marshall.

Departamento Nacional de Infraestrutura de Transportes. (2006). DNIT ES 031: Pavimentos flexíveis – Concreto asfáltico – Especificações de serviço.

Hasan, M.R.M., Chew, J., Jamshidi, A., Yang, X., & Hamzah, M. O. (2019). Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes. Journal of Traffic and Transportation Engineering, 6, 209-244.

Karasahin, M., & Terzi, S. (2007). Evaluation of marble waste dust in the mixture of asphaltic concrete. Construction and Building Materials, 21, 616-620.

Li, Q., Yanjun, Q., Rahman, A., & Ding, H. (2018). Application of steel slag powder to enhance the low-temperature fracture properties of asphalt mastic and its corresponding mechanism. Journal of Cleaner Production, 184, 21-31.

Matos, P., Micaelo, R., Duarte, C., & Quaresma, L. (2014). Influence of bitumen and filler on the selection of appropriate mixing and compaction temperatures. International Journal of Pavement Research and Technology, 7, 237-246.

Modarres, A., Rahmanzadeh, M., & Ayar, R. (2015). Effect of coal waste powder in hot mix asphalt compared to conventional fillers: mix mechanical properties and environmental impacts. Journal of Cleaner Production, 91, 262-268.

Modolo, R., Benta, A., Ferreira, V. M., & Machado, L. M. (2010). Pulp and paper plant wastes valorisation in bituminous mixes. Waste Management, 30, 685-696.

Pasandín, A. R., Pérez, I., Ramírez, A., & Cano, M. M. (2016). Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler. Journal of Cleaner Production, 112, 853-862.

Rahman, Md. A., Imteaz, M. A., Arulrajah, A., Piratheepan, J., & Disfani, M. M. (2015). Recycled construction and demolition materials in permeable pavement systems: geotechnical and hydraulic characteristics. Journal of Cleaner Production, 90, 193-194.

Roberts, F. L., Brown, E. R., Kandhal, P. S., Lee, D., Kennedy, T. W., & Kim, Y. R. (1996). Hot mix asphalt materials, mixture design and construction.

Wang, H., Al-Qadi, I. L., Faheem, A. F., Bahia, H. U., Yang, S., & Reinke, G. H. (2011). Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential. Transportation Research Record, 2208, 33-39.

Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. Journal of Cleaner Production, 177, 302-314.

Wei, C. J., Poovaneshvaran, S., Hasan, M. R. M., Hamzah, M. O., Valentin, J., & Sani, A. (2020). Microscopic analysis and mechanical properties of recycled paper mill sludge modified asphalt mixture using granite and limestone aggregates. Construction and Building Materials, 243.

West, R. C., & James, R. S. (2006). Evaluation of a lime kiln dust as a mineral filler for stone matrix asphalt. Transportation Research Board, 750, 1-18.

Xiong, R., Chu, C., Qiao, N., Wang, L., Yang, F., Sheng, Y., Guan, B., Niu, D., Geng, J., & Chen, H. (2019). Performance evaluation of asphalt mixture exposed to dynamic water and chlorine salt erosion. Construction and Building Materials, 201, 121-126.

Zhang, M., Wang, Y., Song, Y., Zhang, T., & Wang, J. (2016). Manifest system for management of non-hazardous industrial solid wastes: results from a Tianjin industrial park. Journal of Cleaner Production, 133, 252-261.

Zulkati, A., Diew, W. Y., & Delai, D. S. (2012). Effects of fillers on properties of asphalt-concrete mixture. Journal of Transportation Engineering, 138, 902-910.

Downloads

Publicado

16/01/2022

Como Citar

FACHIN, R. T.; RIBEIRO, F. R. C. .; PACHECO, F. .; BREHM, F. A. .; MODOLO, R. C. E. . Valorização da lama do beneficiamento de rochas ornamentais em pavimentos flexíveis. Research, Society and Development, [S. l.], v. 11, n. 1, p. e58711125404, 2022. DOI: 10.33448/rsd-v11i1.25404. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25404. Acesso em: 2 jul. 2024.

Edição

Seção

Engenharias