Estudos de SAR e Docking Molecular para o desenvolvimento de novos inibidores da Tirosinase

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25515

Palavras-chave:

Tirosina; Ácido kojico; Novos inibidores; Modelagem molecular; SAR; Docking.

Resumo

A tirosinase é uma enzima que participa da biossíntese da melanina. Logo, é considerada uma enzima muito importante para alguns processos fisiológicos, além disso, está envolvida desde o processo de escurecimento de algumas frutas até a neurodegeneração do Parkinson. Assim, o ácido kójico é um importante metabólito que possui a propriedade de inibição da enzima tirosinase em relação a produção de melanina. Com isso, o ácido kójico é muito utilizado na medicina, caracterizando-se dessa forma como importante para certos tipos de tratamentos. Sendo assim, neste projeto utilizamos abordagens de modelagem molecular para análises de derivados do ácido kójico, alvo molecular contra a enzima tirosinase, inicialmente a otimização e parametrização foram realizadas através do método semi-empírico PM3. Posteriormente os métodos foram otimizados pelo método TFD, em seguida utilizando o programa computacional MVD foi realizado os cálculos de energia para as moléculas. Tendo como guia para a definição de parâmetros estruturais a estrutura do Tropolone para as análises computacionais visando o ácido kójico e seus derivados. Dessa forma, os resultados obtidos nas simulações chegaram à satisfação. Baseado nos valores de energia obtidos através das análises, os derivados 2,3,8 e 9 são sugeridos como moléculas potenciais candidatos a inibidores da tirosina.

Biografia do Autor

Joyce Karen Lima Vale, Universidade da Amazônia

 

 

 

 

Referências

Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M. M., & Fan, Y. (2017). Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 246(5), 803–816. https://doi.org/10.1007/s00425-017-2749-x

Almeida, V. M., Dias, Ê. R., Souza, B. C., Cruz, J. N., Santos, C. B. R., Leite, F. H. A., Queiroz, R. F., & Branco, A. (2021). Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2021.1900916

Araújo, P. H. F., Ramos, R. S., da Cruz, J. N., Silva, S. G., Ferreira, E. F. B., de Lima, L. R., Macêdo, W. J. C., Espejo-Román, J. M., Campos, J. M., & Santos, C. B. R. (2020). Identification of Potential COX-2 Inhibitors for the Treatment of Inflammatory Diseases Using Molecular Modeling Approaches. Molecules, 25(18), 4183. https://doi.org/10.3390/molecules25184183

Castro, A. L. G., Cruz, J. N., Sodré, D. F., Correa-Barbosa, J., Azonsivo, R., de Oliveira, M. S., de Sousa Siqueira, J. E., da Rocha Galucio, N. C., de Oliveira Bahia, M., Burbano, R. M. R., do Rosário Marinho, A. M., Percário, S., Dolabela, M. F., & Vale, V. V. (2021). Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. Arabian Journal of Chemistry, 14(4), 103084. https://doi.org/10.1016/j.arabjc.2021.103084

Cichorek, M., Wachulska, M., Stasiewicz, A., & Tymińska, A. (2013). Skin melanocytes: biology and development. Advances in Dermatology and Allergology, 1, 30–41. https://doi.org/10.5114/pdia.2013.33376

Cordero, R. J. B., & Casadevall, A. (2020). Melanin. Current Biology, 30(4), R142–R143. https://doi.org/10.1016/j.cub.2019.12.042

Costa, E. B., Silva, R. C., Espejo-Román, J. M., Neto, M. F. de A., Cruz, J. N., Leite, F. H. A., Silva, C. H. T. P., Pinheiro, J. C., Macêdo, W. J. C., & Santos, C. B. R. (2020). Chemometric methods in antimalarial drug design from 1,2,4,5-tetraoxanes analogues. SAR and QSAR in Environmental Research, 31(9), 677–695. https://doi.org/10.1080/1062936X.2020.1803961

da Silva Júnior, O. S., Franco, C. de J. P., de Moraes, A. A. B., Cruz, J. N., da Costa, K. S., do Nascimento, L. D., & Andrade, E. H. de A. (2021). In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon, 195, 111–118. https://doi.org/10.1016/j.toxicon.2021.02.015

de Paulo Farias, D., Neri-Numa, I. A., de Araújo, F. F., & Pastore, G. M. (2020). A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry, 306, 125630. https://doi.org/10.1016/j.foodchem.2019.125630

Krepsky, P. B., Cervelin, M. de O., Porath, D., Peters, R. R., Ribeiro-do-Valle, R. M., & Farias, M. R. (2009). High performance liquid chromatography determination of cucurbitacins in the roots of Wilbrandia ebracteata Cogn. Revista Brasileira de Farmacognosia, 19(3). https://doi.org/10.1590/S0102-695X2009000500011

Leão, R. P., Cruz, J. V., da Costa, G. V., Cruz, J. N., Ferreira, E. F. B., Silva, R. C., de Lima, L. R., Borges, R. S., dos Santos, G. B., & Santos, C. B. R. (2020). Identification of New Rofecoxib-Based Cyclooxygenase-2 Inhibitors: A Bioinformatics Approach. Pharmaceuticals, 13(9), 209. https://doi.org/10.3390/ph13090209

Lee, H., Kim, Y., Park, A., & Nam, J.-M. (2014). Amyloid-β Aggregation with Gold Nanoparticles on Brain Lipid Bilayer. Small, 10(9), 1779–1789. https://doi.org/10.1002/smll.201303242

Lee, S.-R., Park, J.-H., Park, E. K., Chung, C. H., Kang, S.-S., & Bang, O.-S. (2005). Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. Journal of Cellular Physiology, 205(2), 270–277. https://doi.org/10.1002/jcp.20395

Li, Z., Chen, Y., Yang, Y., Yu, Y., Zhang, Y., Zhu, D., Yu, X., Ouyang, X., Xie, Z., Zhao, Y., & Li, L. (2019). Recent Advances in Nanomaterials-Based Chemo-Photothermal Combination Therapy for Improving Cancer Treatment. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00293

Lima, A. de M., Siqueira, A. S., Möller, M. L. S., Souza, R. C. de, Cruz, J. N., Lima, A. R. J., Silva, R. C. da, Aguiar, D. C. F., Junior, J. L. da S. G. V., & Gonçalves, E. C. (2020). In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1821782

Maeda, K., & Fukuda, M. (1991). In vitro effectiveness of several whitening cosmetic components in human melanocytes. Journal of the Society of Cosmetic Chemists, 42(6), 361–368.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X.Li, H.P. Hratchian, A.F. Izmaylov, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, O. Kitao, H.Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K.Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J.Jaramillo, R. Gomperts, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, A. Voth, P. Salvador,J.J. Dannenberg, S. Dapprich, A.D. Daniels, J.B. Foresman, J. v Ortiz, J. Cioslowski, D.J. Fox, D.J. Gaussian, J. Bloino, Y. Honda, K.N. Kudin, R.E.Stratmann, G.A. Voth, Gaussian 09, (2009) 2–3.

Neto, R. de A. M., Santos, C. B. R., Henriques, S. V. C., Machado, L. de O., Cruz, J. N., da Silva, C. H. T. de P., Federico, L. B., Oliveira, E. H. C. de, de Souza, M. P. C., da Silva, P. N. B., Taft, C. A., Ferreira, I. M., & Gomes, M. R. F. (2020). Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1839562

Neves Cruz, J., da Costa, K. S., de Carvalho, T. A. A., & de Alencar, N. A. N. (2020). Measuring the structural impact of mutations on cytochrome P450 21A2, the major steroid 21-hydroxylase related to congenital adrenal hyperplasia. Journal of Biomolecular Structure and Dynamics, 38(5), 1425–1434. https://doi.org/10.1080/07391102.2019.1607560

Ramos, R. S., Macêdo, W. J. C., Costa, J. S., da Silva, C. H. T. de P., Rosa, J. M. C., da Cruz, J. N., de Oliveira, M. S., de Aguiar Andrade, E. H., e Silva, R. B. L., Souto, R. N. P., & Santos, C. B. R. (2020). Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: study of the binding mode via docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38(16), 4687–4709. https://doi.org/10.1080/07391102.2019.1688192

Saeedi, M., Eslamifar, M., & Khezri, K. (2019). Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy, 110, 582–593. https://doi.org/10.1016/j.biopha.2018.12.006

Saghaie, L., Pourfarzam, M., Fassihi, A., & Sartippour, B. (2013). Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Research in Pharmaceutical Sciences, 8(4), 233–242.

Santana de Oliveira, M., da Cruz, J. N., Almeida da Costa, W., Silva, S. G., Brito, M. da P., de Menezes, S. A. F., de Jesus Chaves Neto, A. M., de Aguiar Andrade, E. H., & de Carvalho Junior, R. N. (2020). Chemical Composition, Antimicrobial Properties of Siparuna guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of its Major Chemical Constituent. Molecules, 25(17), 3852. https://doi.org/10.3390/molecules25173852

Santana de Oliveira, M., Pereira da Silva, V. M., Cantão Freitas, L., Gomes Silva, S., Nevez Cruz, J., & Aguiar Andrade, E. H. (2021). Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chemistry & Biodiversity, 18(4). https://doi.org/10.1002/cbdv.202000982

Santos, C. B. R., Santos, K. L. B., Cruz, J. N., Leite, F. H. A., Borges, R. S., Taft, C. A., Campos, J. M., & Silva, C. H. T. P. (2020). Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1761878

Schurink, M., van Berkel, W. J. H., Wichers, H. J., & Boeriu, C. G. (2007). Novel peptides with tyrosinase inhibitory activity. Peptides, 28(3), 485–495. https://doi.org/10.1016/j.peptides.2006.11.023

Sendovski, M., Kanteev, M., Ben-Yosef, V. S., Adir, N., & Fishman, A. (2011). First Structures of an Active Bacterial Tyrosinase Reveal Copper Plasticity. Journal of Molecular Biology, 405(1), 227–237. https://doi.org/10.1016/j.jmb.2010.10.048

Thomsen, R., & Christensen, M. H. (2006). MolDock: A New Technique for High-Accuracy Molecular Docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e

Wen, Z., Liu, B., Zheng, Z., You, X., Pu, Y., & Li, Q. (2010). Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chemical Engineering Research and Design, 88(8), 1102–1107. https://doi.org/10.1016/j.cherd.2010.01.020

Xu, Yimei, Stokes, A. H., Freeman, W. M., Kumer, S. C., Vogt, B. A., & Vrana, K. E. (1997). Tyrosine mRNA is expressed in human substantia nigra. Molecular Brain Research, 45(1), 159–162. https://doi.org/10.1016/S0169-328X(96)00308-7

Xu, You, Shen, Z., Shen, J., Liu, G., Li, W., & Tang, Y. (2011). Computational insights into the different catalytic activities of CYP2A13 and CYP2A6 on NNK. Journal of Molecular Graphics and Modelling, 30, 1–9. https://doi.org/10.1016/j.jmgm.2011.05.002

You, A., Zhou, J., Song, S., Zhu, G., Song, H., & Yi, W. (2015). Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: From potent activators to highly efficient inhibitors. European Journal of Medicinal Chemistry, 93, 255–262. https://doi.org/10.1016/j.ejmech.2015.02.013

Downloads

Publicado

06/02/2022

Como Citar

SOUSA, A. Q. D. de .; CRUZ, J. N. da .; VALE, J. K. L. . Estudos de SAR e Docking Molecular para o desenvolvimento de novos inibidores da Tirosinase. Research, Society and Development, [S. l.], v. 11, n. 2, p. e19811225515, 2022. DOI: 10.33448/rsd-v11i2.25515. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25515. Acesso em: 27 nov. 2024.

Edição

Seção

Ciências da Saúde