Contaminação por bactérias patogênicas multirresistentes em superfícies internas de ambulâncias
DOI:
https://doi.org/10.33448/rsd-v11i2.25925Palavras-chave:
Resistência Bacteriana; Ambulâncias; Resgate; Saúde Pública; Acinetobacter.Resumo
O atendimento pré-hospitalar de emergência é um serviço de atendimento às vítimas de doenças ou acidentes com os mais variados perfis de saúde. As ambulâncias podem ser uma fonte de micro-organismos patogênicos se não forem devidamente higienizadas. Diante disso, o presente estudo teve como objetivo avaliar a comunidade bacteriana presente em diferentes equipamentos e superfícies de ambulâncias utilizadas no atendimento pré-hospitalar e verificar o perfil de resistência aos antibióticos dos isolados. Para tanto, foram escolhidas três ambulâncias em visitas não anunciadas, e selecionados oito pontos de amostragem: parede interna do veículo, colar cervical, macas, lençóis, máscaras, olivas, bloqueios de cabeça e volante. Bactérias patogênicas foram isoladas, identificadas e submetidas a ensaios antimicrobianos. Um total de 144 amostras foram coletadas e 33 espécies diferentes de bactérias foram isoladas. Entre eles, os gêneros patogênicos Staphylococcus, Acinetobacter, Listeria e Ewingella. Staphylococcus, Acinetobacter, Listeria apresentaram cepas resistentes à oxacilina, isoladas de olivas, macas e máscaras que estão em contato frequente com pacientes e socorristas. Os resultados destacam a presença de bactérias patogênicas em superfícies e equipamentos que foram limpos e considerados livres de contágio.
Referências
Almasaudi, S. B. (2018). Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi Journal of Biological Sciences, 25, 586–596.
Asif, M., Alvi, I. A., & Rehman, S. U. (2018). Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249–1260.
Caldron, P. H., Impens, A., Pavlova, M., & Groot, W. (2015). A systematic review of social, economic and diplomatic aspects of short-term medical missions. BMC Health Services Research, 15 (380), 1-10.
Eibicht, S. J., & Vogel, U. (2011). Meticillin-resistant Staphylococcus aureus (MRSA) contamination of ambulance cars after short term transport of MRSA-colonised patients is restricted to the stretcher. Journal of Hospital Infection, 78, 221–225.
El-Mokhtar, M. A., & Hetta, H. (2018). Ambulance vehicles as a source of multidrug-resistant infections: a multicenter study in Assiut City, Egypt. Infection and Drug Resistance, 11, 587–594.
Esposito, S., Miconi, F., Molinari, D., Savarese, E., Celi. F., Marchese, L., Valloscuro, S., Miconi, G., & Principi, N. (2019). What is the role of Ewingella americana in humans? A case report in a healthy 4-year-old girl. BMC Health Services Research, 19, 386.
EUCAST - The European Committee on Antimicrobial Susceptibility Testing. (2019). MIC determination of non-fastidious and fastidious organisms. In: Broth microdilution - EUCAST Read. Guid. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2019_manuals/Reading_guide_BMD_v_1.0_2019.pdf
Farhadloo, R., Goodarzi, Far. J., Azadeh, M., R., Shams, S., & Parvaresh-Masoud, M. (2018). Evaluation of Bacterial Contamination on Prehospital Ambulances Before and After Disinfection. Prehospital and Disaster Medicine, 33, 602–606.
Gordon, O., Cohen, M. J., Gross, I., Amit, S., Averbuch, D., Engelhard, D., ... Moses, A., (2019). Staphylococcus aureus Bacteremia in Children. The Pediatric Infectious Disease Journal, 38, 459–463.
Haaber, J., Penadés, J., R., & Ingmer, H. (2017). Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends in Microbiology, 25, 893–905.
Hudson, A., J., Glaister, G., D., & Wieden, H., J. (2017). The Emergency Medical Service Microbiome. Applied and Environmental Microbiology, 84 (5), 1-14.
James, J., & Biemer, M., D. (1973). Antimicrobial Susceptibility Testing by the Kirby-Bauer Disc Diffusion Method. Annals of Clinical & Laboratory Science, 3,135–140
Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104, 246–251.
Miramonti, C., Rinkle, J., A., Iden, S., Lincoln, J., Huffman, G., Riddell, E., & Kozak, M., A. (2013). The Prevalence of Methicillin-Resistant Staphylococcus Aureus among Out-of-Hospital Care Providers and Emergency Medical Technician Students. Prehospital Emergency Care, 17, 73–77.
Noh, H., Shin, S. D., Kim, N. J., Ro, Y. S., Oh, H. S., Joo, S. I., ... & Ong, M. E. H. (2011). Risk stratification-based surveillance of bacterial contamination in metropolitan ambulances. Journal of Korean medical science, 26(1), 124-130.
Olaimat, A. N., Al‐Holy, M. A., Shahbaz, H. M., Al‐Nabulsi, A. A., Abu Ghoush, M. H., Osaili, T. M., ... & Holley, R. A. (2018). Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1277-1292.
Pollitt, E., J., G., Szkuta, P., T., Burns, N., & Foster, S., J. (2018). Staphylococcus aureus infection dynamics. PLOS Pathogens, 14, e1007112.
Qi, L., Li, H., Zhang, C., Liang, B., Li, J., Wang, L., ... & Song, H. (2016). Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Frontiers In Microbiology, 7, 483.
Russotto, V., Cortegiani, A., Fasciana, T., Iozzo, P., Raineri, S. M., Gregoretti, C., ... & Giarratano, A. (2017). What healthcare workers should know about environmental bacterial contamination in the intensive care unit. BioMed Research International, 2017, 1–7.
Russotto, V., Cortegiani, A., Raineri, S. M., & Giarratano, A. (2015). Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. Journal of intensive care, 3(1), 54.
Santos, T., Viala, D., Chambon, C., Esbelin, J., & Hébraud, M. (2019). Listeria monocytogenes biofilm adaptation to different temperatures seen through shotgun proteomics. Frontiers in nutrition, 6, 89.
Sayah, R. S., Kaneene, J. B., Johnson, Y., & Miller, R. (2005). Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic-and wild-animal fecal samples, human septage, and surface water. Applied and environmental microbiology, 71(3), 1394-1404.
Sheahan, T., Hakstol, R., Kailasam, S., Glaister, G. D., Hudson, A. J., & Hans-Joachim Wieden. (2019). Rapid metagenomics analysis of EMS vehicles for monitoring pathogen load using nanopore DNA sequencing. PLoS One, 14, e0219961.
Shrestha, P., Cooper, B. S., Coast, J., Oppong, R., Thuy, N. D. T., Phodha, T., … & Lubell, Y., (2018). Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrobial Resistance & Infection Control, 7, 98.
Mondello, C., Roccuzzo, S., Stassi, C., Cardia, L., Grieco, A., & Raffino, C. (2019). A unique fatal case of Waterhouse-Friderichsen syndrome caused by Proteus mirabilis in an immunocompetent subject: Case report and literature analysis. Medicine, 98(34), e16664-e16664.
Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews, 28(3), 603-661.
Varona-Barquin, A., Ballesteros-Peña, S., Lorrio-Palomino, S., Ezpeleta, G., Zamanillo, V., Eraso, E., & Quindós, G. (2017). Detection and characterization of surface microbial contamination in emergency ambulances. American journal of infection control, 45(1), 69-71.
Wadhwa Desai, R., & Smith, M. A. (2017). Pregnancy‐related listeriosis. Birth defects research, 109(5), 324-335.
Zarrilli, R., Bagattini, M., Esposito, E. P., & Triassi, M. (2018). Acinetobacter infections in neonates. Current infectious disease reports, 20(12), 48.
Zarrilli, R., Pournaras, S., Giannouli, M., & Tsakris, A. (2013). Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. International journal of antimicrobial agents, 41(1), 11-19.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Aline Viancelli; Barbara F Fornari; Tauani G Fonseca; Apolline P Mass; Fernando M Ramos; William Michelon
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.