Tratamento de lodo de aterro: uma proposta baseada na perspectiva da bioeconomia circular

Autores

DOI:

https://doi.org/10.33448/rsd-v11i3.26075

Palavras-chave:

Biotecnologia; Economia circular; Aterro Sanitário; Microalgas; Águas residuais.

Resumo

O cultivo de microalgas em resíduos líquidos surge como uma possibilidade biotecnológica devido à sustentabilidade do processo, uma vez que poluentes presentes em resíduos como nitrogênio (N) e fósforo (P) são utilizados por esses microrganismos como nutrientes para seu crescimento e produção de biomassa com valor adicionado. O objetivo deste trabalho foi desenvolver um protótipo de fotobiorreatores para remoção de nutrientes: nitrogênio e fósforo através do cultivo da microalga Chlorella vulgaris em lixiviado de aterro sanitário diluído em efluente doméstico. O cultivo teve duração de 28 dias onde foi avaliada a remoção de nutrientes nitrogênio e fósforo, bem como o crescimento de microalgas. Os melhores resultados de crescimento de microalgas foram obtidos em fotobiorreatores contendo 100% de efluente doméstico e 15% de chorume com concentração de clorofila de 2.277,08±247,21 µg.L-1 e 223,12±17,44 µg.L-1, respectivamente, no 21º dia de cultivo. Com relação à remoção de nutrientes de nitrogênio e fósforo, foi possível observar que a espécie utilizada neste estudo apresenta boa eficiência, cerca de 72,36% para nitrogênio e 44,32% para fósforo ao final do cultivo.

Referências

American public health association - APHA, AWWA, WEF. (2012). Standard methods for examination of water and wastewater. American public health association, 1360.

American public health association – APHA. (1998). Standard methods for the examination of water and wastewater 4500-p a/b/e - 20th ed.

Andersen, R.A., Berges, J.A., Harrison, P.J. & Watanabe, M. M. (2005). Appendix a-recipes for freshwater and seawater media. 429-538.

Andrade, D. S. & Filho, A. C. (2014). Potencialidades e desafios do cultivo. Instituto agronômico do paraná (iapar) 1.

Associação Brasileira das Empresas de Limpeza Pública e Resíduos Especiais – ABRELPE. (2015). Estimativas dos custos para viabilizar a universalização da destinação adequada de resíduos sólidos no Brasil.

Barbosa, M. S., Marques, I. M., & Moreira, I.T.A. (2017). Viabilidade no cultivo de microalgas dulciaquicolas em meio lixiviado de aterro sanitário. 4, 1089-1096.

Batista, A., Ambrosano, L., Graça, S., Sousa, C., Marques, P. A. S. S., Ribeiro, B., Botrel, E. P., Neto, P. C. & Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production – an integrated microalgae-based approach. Bioresource technology, 184, 230-235.

Chen, W., Zhang, A., Gu, Z. & Li. Q. (2018). Enhanced degradation of refractory organics in concentrated landfill leachate by fe0/h2o2 coupled with microwave irradiation. Chem. Eng. J. 354, 680-691.

Chong, J. W. R., Tan, X., Khoo, K. S., Ng, H. S., Jonglertjunya, W., Yew, G. Y. & Show, P. L. (2022). Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. Environmental research. 206, 112620. https://doi.org/10.1016/j.envres.2021.112620

Costa, A.M., Alfaia, R.G.D.S.M. & Campos, J.C. (2019). landfill leachate treatment in brazil – an overview. J. Environ. Manag. 232, 110-116.

Dogaris, I., Ammar, E. & Philippidis, G.P. (2020). Prospects of integrating algae technologies into landfill leachate treatment. World j microbiol biotechnol. 36, 39.

Duarte, I. F., Ribeiro, V. De S., Santos, M. I. G. R. Dos, Costa, T. A. D., Santana, M. B. De, Oliveira, A. C. V., Marques, I. M., Ñañez, K. B., Moreira, Í. T. A. (2021). Remediation mechanisms of polycyclic aromatic petroleum hydrocarbons using microalgae and cyanobacteria with emphasis on circular bioeconomy. Research, society and development. 10, (11) E512101119954. Doi: 10.33448/rsd-v10i11.19954.

Hu, D., Zhang, J., Chu, R., Yin, Z., Hu, J., Nugroho, Y. K., Li, Z. & Zhu, L. (2021). Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. Bioresource Technology. 342, 126003. https://doi.org/10.1016/j.biortech.2021.126003

Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 2231078–1085. https://doi.org/10.1016/j.jenvman.2018.07.024.

IBGE-ALBREPE. (2010). Estimativa de geração de resíduos orgânicos e recicláveis nos próximos 20 anos. São paulo.

Jong, M., Joss, S., Schraven, D., ZHAN, C. & Weijnen, M. (2015). Sustainable–smart–resilient–low carbon–eco–knowledge cities, making sense of a multitude of concepts promoting sustainable urbanization. Journal of cleaner production, 109, 25–38.

Kothari, R., Ahmad, S. & Pathak, V.V. (2019). Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass conv. Bioref.

Lam M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T. & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using a nutrient source of domestic wastewater for biodiesel production: growth conditions and kinetic studies. Renewable energy. 103, 197-207.

Li, J., Qiao, J., Tang, J., Jin, Z., Lu, Q., Cheng, J., Zhou, X., Zhang, X., Fu, S., Wan, T., Li, H., Chen, Q. & Zhou, W. (2022). Enhancement of ammonium removal from landfill leachate using microalgae by an integrated strategy of nutrient balance and trophic mode conversion. Algal Research. 61, 102572. https://doi.org/10.1016/j.algal.2021.102572

Lopes, M.S.G. (2015). Engineering biological systems toward a sustainable bioeconomy. J ind microbiol biotechnol 42, 813–838.

Lourenço. S.O. (2006). Cultivo de microalgas marinhas: princípios e aplicações. Editora rima, são carlos, São Paulo.

Luo, H., Zeng, Y., Cheng, Y., He, D. & Pan, X. (2020). Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Science of the total environment. 703, 135468.

Luz, M. V. S. Da., Santos, R. S. S., Oliveira, A. C. V., Marques, I. M., Brioude, M. De M. & Moreira, Í. T. A. (2020). Surface water quality study in foz river lucaia, salvador (ba), brazil. Research, society and development. 9, (8) E736986287. Doi: 10.33448/rsd-v9i8.6287.

Maia, J. L., Cardoso, J. S., Mastrantonio, D. J. S., Bierhals, C. K., Moreira, J. B., Costa, J. A. V. & Morais, M. G. (2020). Microalgae starch: A promising raw material for the bioethanol production. International Journal of Biological Macromolecules. 165, 2739 – 2749. https://doi.org/10.1016/j.ijbiomac.2020.10.159

Maity J. P., Hou, C. P., Majumder, D., Bundschuh, J., Kulp, T. R., Chen, C. Y., Chuang, L. T., Nathan, C. C. N., Jean, J. S., Yang, T. C. & Chen, C. C. (2014). The production of biofuel and bioelectricity associated with wastewater treatment by green algae. Journal energy. 77, 94 - 103.

Marques, I. M., Melo, N. R., Oliveira, A. C. V. & Moreira, Í. T. A. (2020). Bioremediation of urban river wastewater using chlorella vulgaris microalgae to generate biomass with potential for biodiesel production. Research, society and development. 9, (7) E823974882. Doi: 10.33448/rsd-v9i7.4882.

Marques, I. M., Oliveira, A. C. V., Oliveira, O. M. C., Sales, E. A. & Moreira, Í. T.A. (2021). A photobioreactor using nannochloropsis oculata marine microalgae for removal of polycyclic aromatic hydrocarbons and sorption of metals in produced water. Chemosphere. 281, 130775.https://doi.org/10.1016/j.chemosphere.2021.130775

Martinez, M.E., Sánchez, S., Jiménez J.M., Yousfi, F. El. & Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga schenedesmus obliquus. Bioresource technology. 73, 263-272.

Md, A., Jin, F., Choi, J. K., Jeong, U-C. & Kang, S. J. (2019). Effects of marine microalgae (Schizochytrium sp.) In prepared feeds on growth and survival rate of juvenile sea cucumber apostichopus japoncus. Research journal for engineering, technology, and sciences. 30 (1). 325-337.

Miao, L., Yang, G., Tao, T. & Peng,Y. (2019). Recent advances in nitrogen removal from landfill leachate using biological treatments - a review. J. Environ. Manag. 235, 178-185.

Ministério do Meio Ambiente. Resolução conama nº 357. De 17 de março de 2005, publicada no dou nº 053, de 18/03/2005, págs. 58-63. Disponível em: <http://www.mma.gov.br/port/conama/res/res05/res35705.pdf> acesso em: 12 de dez.

Nayak M., Karemore A. & Sem R. (2016). Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal research. (16), 216 – 223.

Oliveira, A. C. V., Silva, A. S. & Moreira, Í. T. A. (2019). Economia circular: conceitos e contribuições na gestão de resíduos urbanos. Revista de desenvolvimento econômico. 3, (44) 273 – 289.

Paskuliakova, A., Tonry, S. & Touzet, N. (2016). Phycoremediation of landfill leachate with chlorophytes: phosphate a limiting factor on ammonia nitrogen removal, Water Res. 99, 180–187, https://doi.org/10.1016/j.watres.2016.04.029.

Pereira, J. L. & Branco, L. H. Z. (2007). Influência do nitrato e fosfato no crescimento de schizomeris leibleinii kützing (chaetophorales, chlorophyta). Acta bot. Bras. 21(1): 155-162.

Quan, X., Hu, Ru., Chang, H., Tang, X., Huang, X., Cheng, C., Zhong, N. & Yang, L. (2020). Enhancing microalgae growth and landfill leachate treatment through ozonization. J. Clean. Prod. 248, 119182.

Ruiz-Marin A., Mendoza-Espinosa L.G. & Stepheson T. (2010). Growth and nutriente removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, bioresource technology. 101, 58–64.

Saleem, S., Zeshan, Iftikhar, R., Zafar, M. I. & Sohail, N. F. (2022). Growth kinetics of microalgae cultivated in different dilutions of fresh leachate for sustainable nutrient recovery and carbon fixation. Biochemical Engineering Journal. 178, 108299. https://doi.org/10.1016/j.bej.2021.108299

Tsui, T. & Wong, J.W.C. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste dispos. Sustain. Energy 1, 151–167.

Wang, Z., Gao, M., Wei, J., Ma, K., Zhang, J., Yang, Y. & Yu, S. (2016). Extracellular polymeric substances, microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations. Bioresource technology. 205, 213-221.

Xiao, C., Liao, Q., Fu, Q., Huang, Y., Chen, H., Zhang, H., Xia, A., Zhu, X., Reungsang, A. & Liu, Z. (2019). A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass. Applied energy. 236, 1011 – 1018. https://doi.org/10.1016/j.apenergy.2018.12.014

Yan, H., Primos, It., Zhang, C. & Zhou. Q. (2015). Perfluoroalkyl acids in municipal landfill leachates from china: occurrence, fate during leachate treatment and potential impact on groundwater, sci. Total environ. 524–525, 23-31.

Downloads

Publicado

15/02/2022

Como Citar

ASSIS, R. R. de .; BARBOSA, M. S. .; LACERDA, E. M. C. .; MACHADO MARQUES, I.; MOREIRA, Ícaro T. A. Tratamento de lodo de aterro: uma proposta baseada na perspectiva da bioeconomia circular. Research, Society and Development, [S. l.], v. 11, n. 3, p. e12911326075, 2022. DOI: 10.33448/rsd-v11i3.26075. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26075. Acesso em: 17 jul. 2024.

Edição

Seção

Engenharias