Estresse térmico em cana-de-açúcar: mudanças fisiológicas e expressão gênica

Autores

DOI:

https://doi.org/10.33448/rsd-v11i3.26260

Palavras-chave:

OJIP; Clorofila; Fluorescência; RNA; Fotossistema.

Resumo

Frente às mudanças climáticas faz-se necessário conhecer os efeitos da temperatura no desenvolvimento das plantas, e identificar quais fatores fisiológicos estão relacionados à redução e/ou aumento da fotossíntese. Esta identificação pode ser feita nos primeiros estádios de desenvolvimento. Assim, objetivou-se avaliar parâmetros fisiológicos da cultivar de cana-de-açúcar RB 86 7515 a 15°C, 28°C e 40°C em diferentes tempos de exposição (0, 4, 8, 12 e 24 horas) e avaliar a expressão gênica 18S. O experimento foi estabelecido em delineamento inteiramente casualizado, com seis repetições. Foram feitas as medidas de clorofila a e b, e estimada a relação a/b, e o total de clorofila nas folhas, e variáveis relacionadas aos fotossistemas. Foram medidos os valores de fluorescência inicial (F0) e máxima (Fm). De posse dessas variáveis foram estimadas as relações: Fv/Fo e a eficiência quântica potencial do fotossistema II (FSII) Fv/Fm. O RNAm foi extraído usando os mesmos tipos de folhas usadas na avaliação da fotossíntese. Altas temperaturas com exposição por 24 horas afetam a eficiência fotossintética das plantas de cana-de-açúcar. Exposição de plantas de cana-de-açúcar com 65 dias de desenvolvimento a 40 ºC por 24 horas é recomendada para avaliação da tolerância ao estresse por temperatura, visando a seleção precoce de genótipos.

Referências

Al-Whaibi, M. H. (2011). Plant heat-shock proteins: a mini review. Journal of King Saud University-Science, 23(2), 139-150.

Barbieri Junior, É., Rossiello, R. O. P., Silva, R. V. M. M., Ribeiro, R. C., & Morenz, M. J. F. (2012). Um novo clorofilômetro para estimar os teores de clorofila em folhas do capim Tifton 85. Ciência Rural, 42, 2242-2245.

Bhatt, D., Negi, M., Sharma, P., Saxena, S. C., Dobriyal, A. K., & Arora, S. (2011). Responses to drought induced oxidative stress in five finger millet varieties differing in their geographical distribution. Physiology and Molecular Biology of Plants, 17(4), 347-353.

Brito, G. G., Sofiatti, V., Brandão, Z. N., Silva, V. B., Silva, F. M., & Silva, D. A. (2011). Non-destructive analysis of photosynthetic pigments in cotton plants. Acta Scientiarum. Agronomy, 33(4), 671-678.

Bustin, S. A. (2002). INVITED REVIEW Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of molecular endocrinology, 29, 23-39.

Cancellier, E. L., Cruz, J. S., dos Santos, M. M., Siebeneichler, S. C., & Fidelis, R. R. (2013). Índices de clorofila em partes da planta de arroz de terras altas. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 8(1), 29.

Castro-Nava, S., & López-Rubio, E. (2019). Thermotolerance and Physiological Traits as Fast Tools to Heat Tolerance Selection in Experimental Sugarcane Genotypes. Agriculture, 9(12), 251.

Chapman, J. R., & Waldenström, J. (2015). With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PloS one, 10(11), e0141853.

Cruz, C. D. (2013). Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271-276.

de Melo Peixoto, M., & Sage, R. F. (2017). Comparative photosynthetic responses in upland and lowland sugarcane cultivars grown in cool and warm conditions. Brazilian Journal of Botany, 40(4), 829-839.

Demirevska-Kepova, K., Holzer, R., Simova-Stoilova, L., & Feller, U. (2005). Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biologia Plantarum, 49(4), 521-525.

De Silva, A. C., Senarathna, H. N., & De Costa, W. J. M. (2021). Genotypic variation of the interactive effects of elevated temperature and CO2 on leaf gas exchange and early growth of sugarcane. Physiologia Plantarum, 173(4), 2276-2290.

Deveci, M., & Pitir, M. (2016). Effect of water deficiency on physiological and chemical properties of pepper grown in greenhouse. Appl. Ecol. Envir. Res, 14, 587-596.

Deveci, M., Cabi, E., Arin, L., & Yavas, Ö. (2017). The Effect of Water Deficit on some Physiological Properties of Abelmoschus esculentus (L.) Moench cv." Sultani".

Dinis, L. T., Ferreira, H., Pinto, G., Bernardo, S., Correia, C. M., & Moutinho-Pereira, J. (2016). Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation. Photosynthetica, 54(1), 47-55.

Dundas, J., & Ling, M. (2012). Reference genes for measuring mRNA expression. Theory in Biosciences, 131(4), 215-223.

Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10(6), 565-572.

Falker Automação Agrícola Ltda. (2008). Manual do medidor eletrônico de teor clorofila (ClorofiLOG/CFL 1030).

Ferreira, D. F. (2011). Sisvar: um sistema computacional de análise estatística. Ciênc. Agrotec.[online] 35: 1039-1042.

Flack‐Prain, S., Shi, L., Zhu, P., da Rocha, H. R., Cabral, O., Hu, S., & Williams, M. (2021). The impact of climate change and climate extremes on sugarcane production. GCB Bioenergy, 13(3), 408-424.

Goltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., & Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869-893.

Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., & Van Wuytswinkel, O. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription‐polymerase chain reaction (RT‐PCR) analysis in plants. Plant biotechnology journal, 6(6), 609-618.

Havaux, M. (1993). Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant, Cell & Environment, 16(4), 461-467.

Kalaji, H. M., Bosa, K., Kościelniak, J., & Hossain, Z. (2011). Chlorophyll a fluorescence—a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). Omics: a journal of integrative biology, 15(12), 925-934.

Kalaji, H. M., Schansker, G., Ladle, R. J., Goltsev, V., Bosa, K., Allakhverdiev, S. I., & Zivcak, M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122(2), 121-158.

Kok, D., & Bal, E. (2018). Enhancing skin color and phenolic compounds of cv. Red Globe table grape (V. vinifera L.) utilizing of different preharvest treatments. Erwerbs-Obstbau, 60(1), 75-81.

Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., & Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10(3), 310-316.

Kozera, B., & Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391-406.

Kreslavski, V. D., Brestic, M., Zharmukhamedov, S. K., Lyubimov, V. Y., Lankin, A. V., Jajoo, A., & Allakhverdiev, S. I. (2017). Mechanisms of inhibitory effects of polycyclic aromatic hydrocarbons in photosynthetic primary processes in pea leaves and thylakoid preparations. Plant Biology, 19(5), 683-688.

Lichtenthaler, H. K., Wenzel, O., Buschmann, C., & Gitelson, A. (1998). Plant Stress Detection by Reflectance and Fluorescence a. Annals of the New York Academy of Sciences, 851(1), 271-285.

Loka, D. A., & Oosterhuis, D. M. (2010). Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environmental and Experimental Botany, 68(3), 258-263.

Malaspina, P., Modenesi, P., & Giordani, P. (2018). Physiological response of two varieties of the lichen Pseudevernia furfuracea to atmospheric pollution. Ecological Indicators, 86, 27-34.

Mamedov, M., Hayashi, H., & Murata, N. (1993). Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron-transport and phosphorylation reactions in Synechocystis PCC6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1142(1-2), 1-5.

Massad, R. S., Tuzet, A., & Bethenod, O. (2007). The effect of temperature on C4‐type leaf photosynthesis parameters. Plant, cell & environment, 30(9), 1191-1204.

Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48(1), 16-20.

Olivoto, T., Nardino, M., Carvalho, I. R. C., Follmann, D. N., Szareski, V. J., Ferrari, M., & Souza, V. Q. (2016). Pearson correlation coefficient and accuracy of path analysis used in maize breeding: a critical review. International Journal of Current Research, 8(9), 37787-37795.

Oukarroum, A., Schansker, G., & Strasser, R. J. (2009). Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum, 137(2), 188-199.

Pfaffl, M. W. (2004). Quantification strategies in real-time PCR. AZ of quantitative PCR, 1, 89-113.

Pinheiro, G. M., & Ramos, C. H. (2018). Initial characterization of newly identified mitochondrial and chloroplast small HSPs from sugarcane shows that these chaperones have different oligomerization states and substrate specificities. Plant Physiology and Biochemistry, 129, 285-294.

Pulido, P., Cazalis, R., & Cejudo, F. J. (2009). An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. The Plant Journal, 57(1), 132-145.

Ristic, Z., Bukovnik, U., & Prasad, P. V. (2007). Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Science, 47(5), 2067-2073.

Rocha, A. J., Monteiro-Júnior, J. E., Freire, J. E., Sousa, A. J., & Fonteles, C. S. (2015). Real time PCR: the use of reference genes and essential rules required to obtain normalisation data reliable to quantitative gene expression. Journal of Molecular Biology Research, 5(1), 45.

Sairam, R. K., & Srivastava, G. C. (2000). Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biologia Plantarum, 43(3), 381-386.

Sairam, R. K., & Srivastava, G. C. (2000). Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biologia Plantarum, 43(3), 381-386.

Sanghera, G. S., Malhotra, P. K., Singh, H., & Bhatt, R. (2019). Climate change impact in sugarcane agriculture and mitigation strategies. Harnessing Plant Biotechnology and Physiology to Stimulate Agricultural Growth, 99-115.

Sato, S. T. A., Ribeiro, S. D. C. A., Sato, M. K., & Souza, J. N. S. (2014). Caracterização física e físico-química de pitayas vermelhas (Hylocereus costaricensis) produzidas em três municípios paraenses.

Sellami, K., Couvert, A., Nasrallah, N., Maachi, R., Abouseoud, M., & Amrane, A. (2022). Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Science of the Total Environment, 806, 150500.

Shabbir, R., Javed, T., Afzal, I., Sabagh, A. E., Ali, A., Vicente, O., & Chen, P. (2021). Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. Agronomy, 11(6), 1042.

Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., & Venkateswarlu, B. (2014). Drought stress responses in crops. Functional & integrative genomics, 14(1), 11-22.

Sharma, K., Salik, F., & Rather, S. A. (2022). Responses and Adaptation of Photosynthesis and Respiration under Challenging Environments. Plant Abiotic Stress Physiology: Volume 1: Responses and Adaptations, 119.

Shen, Y., Zhang, Y., Kondoh, A., Tang, C., Chen, J., Xiao, J., & Sun, H. (2004). Seasonal variation of energy partitioning in irrigated lands. Hydrological Processes, 18(12), 2223-2234.

Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., & Yuan, Y. H. (2013). Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiology and Biochemistry, 63, 209-216.

Silva, H. W. D., Costa, L. M., Resende, O., de Oliveira, D. E., Soares, R. S., & Vale, L. S. (2015). Higroscopicidade das sementes de pimenta (Capsicum chinense L.). Revista Brasileira de Engenharia Agrícola e Ambiental, 19, 780-784.

Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D. P. (2018). Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489-497.

Singh, A., Sengar, K., Sharma, M. K., Sengar, R. S., & Garg, S. K. (2018). Proline metabolism as sensors of abiotic stress in sugarcane. Biotechnology to enhance sugarcane productivity and stress tolerance, 265-284.

Siqueira-Silva, A. I., Rios, C. O., & Pereira, E. G. (2019). Iron toxicity resistance strategies in tropical grasses: the role of apoplastic radicular barriers. Journal of Environmental Sciences, 78, 257-266.

Sitko, K., Rusinowski, S., Kalaji, H. M., Szopiński, M., & Małkowski, E. (2017). Photosynthetic efficiency as bioindicator of environmental pressure in A. halleri. Plant Physiology, 175(1), 290-302.

Souza MA, Pimentel AJB, Ribeiro G. Melhoramento para tolerância ao calor. Melhoramento de plantas para condições de estresses abióticos. Viçosa: Suprema, p. 199-226, 2011.

Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a fluorescence (pp. 321-362). Springer, Dordrecht.

Strasser, R. J., Tsimilli-Michael, M., Qiang, S., & Goltsev, V. (2010). Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(6-7), 1313-1326.

Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., & Heinen, E. (1999). Housekeeping genes as internal standards: use and limits. Journal of biotechnology, 75(2-3), 291-295.

Timperio, A. M., Egidi, M. G., & Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of proteomics, 71(4), 391-411.

Ul Hassan, M., Rasool, T., Iqbal, C., Arshad, A., Abrar, M., Abrar, M. M., & Fahad, S. (2021). Linking Plants Functioning to Adaptive Responses Under Heat Stress Conditions: A Mechanistic Review. Journal of Plant Growth Regulation, 1-18.

Wahid, A. (2007). Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of plant Research, 120(2), 219-228.

Wang, D., Heckathorn, S. A., Wang, X., & Philpott, S. M. (2012). A meta-analysis of plant physiological and growth responses to temperature and elevated CO 2. Oecologia, 169(1), 1-13.

Wang, L., Guo, Y., Jia, L., Chu, H., Zhou, S., Chen, K., & Zhao, L. (2014). Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiology, 164(4), 2184-2196.

Yan, S. P., Zhang, Q. Y., Tang, Z. C., Su, W. A., & Sun, W. N. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & cellular proteomics, 5(3), 484-496.

Yan, M., Jin, X., Liu, Y., Chen, H., Ye, T., Hou, Z., & Niu, X. (2021). Identification and evaluation of the novel genes for transcript normalization during female gametophyte development in sugarcane. PeerJ, 9, e12298.

Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., & Sarin, N. B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(8), 1428-1438.

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia plantarum, 162(1), 2-12.

Downloads

Publicado

16/02/2022

Como Citar

PANTA, A. M. dos S. .; SOUZA, J. L. .; GAGLIARDI, P. R. .; OLIVEIRA JUNIOR, L. F. G. .; FONTES, P. T. N. .; FAGUNDES, J. L. .; SILVA-MANN, R. . Estresse térmico em cana-de-açúcar: mudanças fisiológicas e expressão gênica . Research, Society and Development, [S. l.], v. 11, n. 3, p. e15511326260, 2022. DOI: 10.33448/rsd-v11i3.26260. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26260. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas