Avaliação das Possibilidades e Desafios do Gás de Xisto na Transição Energética Global

Autores

DOI:

https://doi.org/10.33448/rsd-v11i3.26282

Palavras-chave:

Gás de xisto; Transição Energética; Matriz SWOT; Gás natural.

Resumo

O aprimoramento das técnicas de perfuração horizontal e fraturamento hidráulico torna a exploração de gás de xisto uma opção econômica. O gás de xisto tem potencial para reformular a política energética nos níveis nacional e internacional. O desenvolvimento do gás de xisto pode ser um caminho eficaz para uma transição energética de baixo carbono porque o gás natural, convencional ou não convencional, tem emissões relativamente menores do que outros combustíveis fósseis, além de menor custo e reservas globais abundantes. Este artigo usa o método de análise SWOT para identificar possibilidades e desafios que o desenvolvimento de gás de xisto pode enfrentar. Para preparar a análise, foi realizada uma busca avançada na plataforma Science Direct, investigando os pontos fortes (S), pontos fracos (W), oportunidades (O) e ameaças (T) do desenvolvimento do gás de xisto ligado à transição energética. A força mais citada foi a disponibilidade abundante, seguida pelo aumento da segurança energética. Quanto às fragilidades, as mais evidentes foram os impactos ambientais e a poluição. A oportunidade mais relatada para o desenvolvimento de gás de xisto foi a perspectiva de substituição de outras fontes, e a ameaça foi o ceticismo público e menos apoio do que há para as energias renováveis, embora a proibição também tenha sido incluída. Um caminho possível para o desenvolvimento do gás de xisto, num contexto de transição energética, é a oportunidade de substituir outras fontes, como o carvão, aproveitando a sua abundância e segurança energética. No entanto, para que o desenvolvimento se torne relativamente limpo, as emissões fugitivas e outros aspectos negativos da exploração devem ser mitigados.

Referências

Abas, N., Kalair, E., Kalair, A., Hasan, Q. ul, & Khan, N. (2020). Nature inspired artificial photosynthesis technologies for hydrogen production: Barriers and challenges. International Journal of Hydrogen Energy, 45(41), 20787–20799. https://doi.org/10.1016/j.ijhydene.2019.12.010

Absar, S. M., Boulay, A. M., Campa, M. F., Preston, B. L., & Taylor, A. (2018). The tradeoff between water and carbon footprints of Barnett Shale gas. Journal of Cleaner Production, 197, 47–56. https://doi.org/10.1016/j.jclepro.2018.06.140

Aczel, M. R., Makuch, K. E., & Chibane, M. (2018). How much is enough? Approaches to public participation in shale gas regulation across England, France, and Algeria. Extractive Industries and Society, 5(4), 427–440. https://doi.org/10.1016/j.exis.2018.10.003

Agency, I. E. (2011). Are We Entering A Golden Age of Gas? World Energy Outlook, November, 329. http://www.iea.org/weo/docs/weo2011/WEO2011_GoldenAgeofGasReport.pdf

Aguilera, R. F., & Aguilera, R. (2012). World natural gas endowment as a bridge towards zero carbon emissions. Technological Forecasting and Social Change, 79(3), 579–586. https://doi.org/10.1016/j.techfore.2011.09.004

Alberto, J., & Ibarzábal, H. (2018). The Extractive Industries and Society Can shale gas development in Mexico be smart regulated ? A qualitative analysis of the regulatory setting , challenges and perspectives. The Extractive Industries and Society, 5(4), 490–498. https://doi.org/10.1016/j.exis.2018.08.008

Altawell, N. (2020). Coal. In Rural Electrification: Optimizing Economics, Planning and Policy in an Era of Climate Change and Energy Transition (pp. 19–38). https://doi.org/10.1016/B978-0-12-822403-8.00002-3

Amec Foster Wheeler. (2015). Shale Gas Study. April, 276. http://www.anp.gov.br/SITE/acao/download/?id=82613

Andreasson, S. (2018). The bubble that got away? Prospects for shale gas development in South Africa. Extractive Industries and Society, 5(4), 453–460. https://doi.org/10.1016/j.exis.2018.07.004

Arend, L., Silva, Y. F. M. da, Pereira, C. A. A., Santos, E. M. dos, & Peyerl, D. (2022). Prospects and challenges of the liquefied natural gas market in Brazil. Research, Society and Development, 11(2), e11811225527. https://doi.org/10.33448/rsd-v11i2.25527

Atalla, T., Blazquez, J., Hunt, L. C., & Manzano, B. (2017). Prices versus policy: An analysis of the drivers of the primary fossil fuel mix. Energy Policy, 106(October 2016), 536–546. https://doi.org/10.1016/j.enpol.2017.03.060

Atkinson, D. (2018). Fracking in a fractured environment: Shale gas mining and institutional dynamics in South Africa’s young democracy. Extractive Industries and Society, 5(4), 441–452. https://doi.org/10.1016/j.exis.2018.09.013

Azubuike, S. I., Songi, O., Irowarisima, M., & Chinda, J. K. (2018). Identifying policy and legal issues for shale gas development in Algeria : A SWOT analysis. The Extractive Industries and Society, 5(4), 469–480. https://doi.org/10.1016/j.exis.2018.10.005

Becker, V., & Werner, A. (2014). One Step Forward, One Step Back: Shale Gas in Denmark and Sweden. Journal of European Management & Public Affairs Studies, 1(2), 23–30. https://doi.org/10.15771/2199-1618_2014_1_2_4

Bellani, J., Verma, H. K., Khatri, D., Makwana, D., & Shah, M. (2021). Shale gas: a step toward sustainable energy future. Journal of Petroleum Exploration and Production, 0123456789. https://doi.org/10.1007/s13202-021-01157-7

Boersma, T., Leber, A., & Potvin, J. (2015). Shale Gas in Algeria. November.

Bouman, E. A., Ramirez, A., & Hertwich, E. G. (2015). Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources. International Journal of Greenhouse Gas Control, 33, 1–9. https://doi.org/10.1016/j.ijggc.2014.11.015

Buira, D., Tovilla, J., Farbes, J., Jones, R., Haley, B., & Gastelum, D. (2021). A whole-economy Deep Decarbonization Pathway for Mexico. Energy Strategy Reviews, 33(October 2020), 100578. https://doi.org/10.1016/j.esr.2020.100578

Burdis, S. (2021). Calls grow for an Irish-led global ban on fracking. Green News.Ie. https://greennews.ie/ichr-report-global-ban-on-fracked-gas/

Camargo, T. R. M. de, Merschmann, P. R. de C., Arroyo, E. V., & Szklo, A. (2014). Major challenges for developing unconventional gas in Brazil - Will water resources impede the development of the Country’s industry? Resources Policy, 41(1), 60–71. https://doi.org/10.1016/j.resourpol.2014.03.001

Campbell, K., & Horne, M. (2011). Shale Gas in British Columbia (Issue September).

Cantoni, R., Klaes, M. S., Lackerbauer, S. I., Foltyn, C., & Keller, R. (2018). The Extractive Industries and Society Shale tales : Politics of knowledge and promises in Europe ’ s shale gas discourses. The Extractive Industries and Society, 5(4), 535–546. https://doi.org/10.1016/j.exis.2018.09.004

Carbon Brief Staff. (2012). Shale gas needs CCS and emissions guarantee, says Environment Agency boss. https://www.carbonbrief.org/shale-gas-needs-ccs-and-emissions-guarantee-says-environment-agency-boss

Carley, S., Evans, T. P., & Konisky, D. M. (2018). Adaptation, culture, and the energy transition in American coal country. Energy Research and Social Science, 37(October 2017), 133–139. https://doi.org/10.1016/j.erss.2017.10.007

Chailleux, S., Merlin, J., & Gunzburger, Y. (2018). Unconventional oil and gas in France: From popular distrust to politicization of the underground. Extractive Industries and Society, 5(4), 682–690. https://doi.org/10.1016/j.exis.2018.05.007

Chang, Y., Huang, R., Ries, R. J., & Masanet, E. (2014). Shale-to-well energy use and air pollutant emissions of shale gas production in China. Applied Energy, 125, 147–157. https://doi.org/10.1016/j.apenergy.2014.03.039

Chávez-Rodríguez, M. F., Dias, L., Simoes, S., Seixas, J., Hawkes, A., Szklo, A., & Lucena, A. F. P. (2017). Modelling the natural gas dynamics in the Southern Cone of Latin America. Applied Energy, 201, 219–239. https://doi.org/10.1016/j.apenergy.2017.05.061

Chen, Y., Li, J., Lu, H., & Xia, J. (2020). Tradeoffs in water and carbon footprints of shale gas, natural gas, and coal in China. Fuel, 263(September 2019), 116778. https://doi.org/10.1016/j.fuel.2019.116778

Cooper, J., Stamford, L., & Azapagic, A. (2018). Social sustainability assessment of shale gas in the UK. Sustainable Production and Consumption, 14(December), 1–20. https://doi.org/10.1016/j.spc.2017.12.004

Costie, D. P., Holm, F., & Berardo, R. (2021). The Extractive Industries and Society Hydraulic fracturing , coalition activity and shock : Assessing the potential for coalition-based collective action in Argentina ’ s Vaca Muerta formation. The Extractive Industries and Society, 5(4), 499–507. https://doi.org/10.1016/j.exis.2018.08.003

Cuppen, E., Pesch, U., Remmerswaal, S., & Taanman, M. (2019). Normative diversity, conflict and transition: Shale gas in the Netherlands. Technological Forecasting and Social Change, 145, 165–175. https://doi.org/10.1016/j.techfore.2016.11.004

Danish Energy Agency. (2021). Shale gas. https://ens.dk/en/our-responsibilities/oil-gas/shale-gas

Davis, C., Bollinger, L. A., & Dijkema, G. P. J. (2016). The state of the states: Data-driven analysis of the US Clean Power Plan. Renewable and Sustainable Energy Reviews, 60, 631–652. https://doi.org/10.1016/j.rser.2016.01.097

Delborne, J. A., Hasala, D., Wigner, A., & Kinchy, A. (2020). Dueling metaphors, fueling futures: “Bridge fuel” visions of coal and natural gas in the United States. Energy Research and Social Science, 61(July 2019), 101350. https://doi.org/10.1016/j.erss.2019.101350

Demski, C., Butler, C., Parkhill, K. A., Spence, A., & Pidgeon, N. F. (2015). Public values for energy system change. Global Environmental Change, 34, 59–69. https://doi.org/10.1016/j.gloenvcha.2015.06.014

Dincer, I., & Zamfirescu, C. (2016). A review of novel energy options for clean rail applications. Journal of Natural Gas Science and Engineering, 28, 461–478. https://doi.org/10.1016/j.jngse.2015.12.007

Dutu, R. (2016). Challenges and policies in Indonesia’s energy sector. Energy Policy, 98, 513–519. https://doi.org/10.1016/j.enpol.2016.09.009

EIA. (2013). Technically Recoverable Shale Oil and Shale Gas Resources : An Assessment of 137 Shale Formations in 41 Countries Outside the United States. 2013(June).

EIA. (2016). Shale gas production drives world natural gas production growth. https://www.eia.gov/todayinenergy/detail.php?id=27512

EIA. (2020). More than 100 coal-fired plants have been replaced or converted to natural gas since 2011. https://www.eia.gov/todayinenergy/detail.php?id=44636

Eurostat. (2020). EU imports of energy products - recent developments. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=EU_imports_of_energy_products_-_recent_developments

Euzen, T. (2011). Shale gas – an overview. Corporate Document, 403, 76pp.

Evensen, D. (2018). Review of shale gas social science in the United Kingdom, 2013–2018. Extractive Industries and Society, 5(4), 691–698. https://doi.org/10.1016/j.exis.2018.09.005

Ganguli, S. (2016). Energy interdependence as a strategic factor in the post-cold war context. Strategic Analysis, 40(3), 185–198. https://doi.org/10.1080/09700161.2016.1165468

Gao, J., & You, F. (2017). Design and optimization of shale gas energy systems: Overview, research challenges, and future directions. Computers and Chemical Engineering, 106, 699–718. https://doi.org/10.1016/j.compchemeng.2017.01.032

Giampietro, M., & Mayumi, K. (2018). Unraveling the Complexity of the Jevons Paradox: The Link Between Innovation, Efficiency, and Sustainability. https://doi.org/https://doi.org/10.3389/fenrg.2018.00026

Gonzalez Cruz, C., Naderpour, M., & Ramezani, F. (2018). Water resource selection and optimisation for shale gas developments in Australia: A combinatorial approach. Computers and Industrial Engineering, 124(May), 1–11. https://doi.org/10.1016/j.cie.2018.07.015

Goswami, A., & George, A. (2020). No TitleUS Elections 2020: Why is fracking a big deal. https://www.downtoearth.org.in/blog/climate-change/us-elections-2020-why-is-fracking-a-big-deal-74089

Griffiths, S. (2017). A review and assessment of energy policy in the Middle East and North Africa region. Energy Policy, 102(December 2016), 249–269. https://doi.org/10.1016/j.enpol.2016.12.023

Guler, B., Çelebi, E., & Nathwani, J. (2018). A ‘Regional Energy Hub’ for achieving a low-carbon energy transition. Energy Policy, 113(November 2017), 376–385. https://doi.org/10.1016/j.enpol.2017.10.044

Guliyev, F. (2020). Trump’s “America first” energy policy, contingency and the reconfiguration of the global energy order. Energy Policy, 140(August 2019), 111435. https://doi.org/10.1016/j.enpol.2020.111435

He, L., Chen, Y., & Li, J. (2018). A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains. Resources, Conservation and Recycling, 133(July 2017), 206–228. https://doi.org/10.1016/j.resconrec.2018.02.015

Heikkila, T., Berardo, R., Weible, C. M., & Yi, H. C. : E. S. D. P. in the U. A. A. C. V. of A. C. : E. S. D. P. (2018). A Comparative View of Advocacy Coalitions: Exploring Shale Development Politics in the United States, Argentina, and China. Journal of Comparative Policy Analysis: Research and Practice, 00(00), 1–16. https://doi.org/10.1080/13876988.2017.1405551

Herrera, H. (2020). The legal status of fracking worldwide: An environmental law and human rights perspective. https://gnhre.org/2020/01/06/the-legal-status-of-fracking-worldwide-an-environmental-law-and-human-rights-perspective/

Hess, D. J., & Renner, M. (2019). Conservative political parties and energy transitions in Europe: Opposition to climate mitigation policies. Renewable and Sustainable Energy Reviews, 104(November 2017), 419–428. https://doi.org/10.1016/j.rser.2019.01.019

House, E. J. (2013). Fractured Fairytales: The Failed Social License for Unconventional Oil and Gas Development (13th ed.). Wyoming Law Review.

Howarth, R. W. (2014). A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Science and Engineering, 2(2), 47–60. https://doi.org/10.1002/ese3.35

Howarth, R. W., Ingraffea, A., & Engelder, T. (2011). Should fracking stop? Nature, 477(7364), 271–275. https://doi.org/10.1038/477271a

Howarth, R. W., Santoro, R., & Ingraffea, A. (2011). Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change, 106(4), 679–690. https://doi.org/10.1007/s10584-011-0061-5

Hudgins, D., & Lee, J. (2016). Modeling the Expansion of Oil Production in South Texas and Mexico Modeling the Expansion of Oil Production in South Texas. The International Trade Journal, 30(5), 387–414. https://doi.org/10.1080/08853908.2016.1204965

Hultman, N., Rebois, D., Scholten, M., & Ramig, C. (2011). The greenhouse impact of unconventional gas for electricity generation. Environmental Research Letters, 6(4). https://doi.org/10.1088/1748-9326/6/4/049504

IEA. (2019). The Role of Gas in Today’s Energy Transitions. https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions

IGU. (2020). Global Gas Report 2020. In Global Gas Report 2020. https://www.igu.org/app/uploads-wp/2020/08/GGR_2020.pdf

Jenner, S., & Lamadrid, A. J. (2013). Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States. Energy Policy, 53, 442–453. https://doi.org/10.1016/j.enpol.2012.11.010

Jin, Y., Behrens, P., Tukker, A., & Scherer, L. (2019). Water use of electricity technologies: A global meta-analysis. Renewable and Sustainable Energy Reviews, 115(June), 109391. https://doi.org/10.1016/j.rser.2019.109391

Jouvet, P. A., & De Perthuis, C. (2013). Green growth: From intention to implementation. International Economics, 134, 29–55. https://doi.org/10.1016/j.inteco.2013.05.003

Kerr, R. A. (2010). Do we have the energy for the next transition? Science, 329(5993), 780–781. https://doi.org/10.1126/science.329.5993.780

Khan, M. I., Yasmeen, T., Khan, M. I., Farooq, M., & Wakeel, M. (2016). Research progress in the development of natural gas as fuel for road vehicles: A bibliographic review (1991-2016). Renewable and Sustainable Energy Reviews, 66, 702–741. https://doi.org/10.1016/j.rser.2016.08.041

Khosrokhavar, R., Griffiths, S., & Wolf, K. H. (2014). Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook. Environmental Processes, 1(4), 595–611. https://doi.org/10.1007/s40710-014-0036-4

Kim, Y., & Blank, S. (2015). US shale revolution and Russia: shifting geopolitics of energy in Europe and Asia. Asia Europe Journal, 13(1), 95–112. https://doi.org/10.1007/s10308-014-0400-z

LaBelle, M. (2017). A state of fracking: Building Poland’s national innovation capacity for shale gas. Energy Research and Social Science, 23, 26–35. https://doi.org/10.1016/j.erss.2016.11.003

Lange, M., O’Hagan, A. M., Devoy, R. R. N., Le Tissier, M., & Cummins, V. (2018). Governance barriers to sustainable energy transitions – Assessing Ireland’s capacity towards marine energy futures. Energy Policy, 113(November 2017), 623–632. https://doi.org/10.1016/j.enpol.2017.11.020

Lange, M., Page, G., & Cummins, V. (2018). Governance challenges of marine renewable energy developments in the U.S. – Creating the enabling conditions for successful project development. Marine Policy, 90(December 2017), 37–46. https://doi.org/10.1016/j.marpol.2018.01.008

Lenhard, L. G., Andersen, S. M., & Coimbra-Araújo, C. H. (2018). Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil. Renewable and Sustainable Energy Reviews, 90(March), 56–69. https://doi.org/10.1016/j.rser.2018.03.042

Lin, B., & Agyeman, S. (2021). Impact of natural gas consumption on sub-Saharan Africa’s CO2 emissions: Evidence and policy perspective. Science of the Total Environment, 760, 143321. https://doi.org/10.1016/j.scitotenv.2020.143321

Liu, J., Li, Z., Luo, D., Duan, X., & Liu, R. (2020). Shale gas production in China: A regional analysis of subsidies and suggestions for policy. Utilities Policy, 67(September 2019), 101135. https://doi.org/10.1016/j.jup.2020.101135

Liu, R., Wang, J., & Lin, L. (2021). The Extractive Industries and Society Water scarcity footprint assessment for China ’ s shale gas development. The Extractive Industries and Society, 8(2), 100892. https://doi.org/10.1016/j.exis.2021.02.012

Lozano-Maya, J. R. (2016). Shale Gas Development Within the Global Energy Transition: Friend or Foe? https://www.atlanticcouncil.org/blogs/new-atlanticist/shale-gas-development-within-the-global-energy-transition-friend-or-foe/

Markovska, N., Taseska, V., & Pop-Jordanov, J. (2009). SWOT analyses of the national energy sector for sustainable energy development. Energy, 34(6), 752–756. https://doi.org/10.1016/j.energy.2009.02.006

Melikoglu, M. (2014). Shale gas: Analysis of its role in the global energy market. Renewable and Sustainable Energy Reviews, 37, 460–468. https://doi.org/10.1016/j.rser.2014.05.002

Mendelevitch, R., Hauenstein, C., & Holz, F. (2019). Climate Policy The death spiral of coal in the U.S.: will changes in U.S. Policy turn the tide? The death spiral of coal in the U.S.: will changes in U.S. Policy turn the tide? Technology. https://doi.org/10.1080/14693062.2019.1641462

Mendhe, V. A., Mishra, S., Varma, A. K., Kamble, A. D., Bannerjee, M., & Sutay, T. (2017). Gas reservoir characteristics of the Lower Gondwana Shales in Raniganj Basin of Eastern India. Journal of Petroleum Science and Engineering, 149(45), 649–664. https://doi.org/10.1016/j.petrol.2016.11.008

Morrissey, J., Schwaller, E., Dickson, D., & Axon, S. (2020). Affordability, security, sustainability? Grassroots community energy visions from Liverpool, United Kingdom. Energy Research and Social Science, 70(January), 101698. https://doi.org/10.1016/j.erss.2020.101698

NRCan. (2017a). Alberta’s Shale and Tight Resources. https://www.nrcan.gc.ca/our-natural-resources/energy-sources-distribution/clean-fossil-fuels/natural-gas/shale-and-tight-resources-canada/albertas-shale-and-tight-resources/17679

NRCan. (2017b). British Columbia’s Shale and Tight Resources.

Oduro Appiah, J., Opio, C., & Donnelly, S. (2020). Quantifying, comparing, and contrasting forest change pattern from shale gas infrastructure development in the British Columbia’s shale gas plays. International Journal of Sustainable Development and World Ecology, 27(2), 114–128. https://doi.org/10.1080/13504509.2019.1649313

Ogden, J., Jaffe, A. M., Scheitrum, D., McDonald, Z., & Miller, M. (2018). Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy, 115(February 2017), 317–329. https://doi.org/10.1016/j.enpol.2017.12.049

ONGC. (2021). Shale gas. https://www.ongcindia.com/wps/wcm/connect/en/about-ongc/new-initiatives-in-energy/shale-gas/

Osborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8172–8176. https://doi.org/10.1073/pnas.1100682108

Perlaviciute, G., & Steg, L. (2014). Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda. Renewable and Sustainable Energy Reviews, 35, 361–381. https://doi.org/10.1016/j.rser.2014.04.003

Qin, Y., Tong, F., Yang, G., & Mauzerall, D. L. (2018). Challenges of using natural gas as a carbon mitigation option in China. Energy Policy, 117(July 2017), 457–462. https://doi.org/10.1016/j.enpol.2018.03.004

Quitzow, R., Bersalli, G., Eicke, L., Jahn, J., Lilliestam, J., Lira, F., Marian, A., Süsser, D., Thapar, S., Weko, S., Williams, S., & Xue, B. (2021). The COVID-19 crisis deepens the gulf between leaders and laggards in the global energy transition. Energy Research and Social Science, 74, 101981. https://doi.org/10.1016/j.erss.2021.101981

Rasch, E. D. D., & Köhne, M. (2017). Practices and imaginations of energy justice in transition. A case study of the Noordoostpolder, the Netherlands. Energy Policy, 107(November 2016), 607–614. https://doi.org/10.1016/j.enpol.2017.03.037

Rasch, E. D., & Köhne, M. (2016). Hydraulic fracturing, energy transition and political engagement in the Netherlands: The energetics of citizenship. Energy Research and Social Science, 13, 106–115. https://doi.org/10.1016/j.erss.2015.12.014

Raza, A., Meiyu, G., Gholami, R., Rezaee, R., Rasouli, V., Sarmadivaleh, M., & Bhatti, A. A. (2018). Shale gas: A solution for energy crisis and lower CO2 emission in Pakistan. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(13), 1647–1656. https://doi.org/10.1080/15567036.2018.1486486

Ritchie, H. (2017). How long before we run out of fossil fuels? Our World in Data. https://ourworldindata.org/how-long-before-we-run-out-of-fossil-fuels

Roddis, P., Carver, S., Dallimer, M., & Ziv, G. (2019). Accounting for taste? Analysing diverging public support for energy sources in Great Britain. Energy Research and Social Science, 56(July), 101226. https://doi.org/10.1016/j.erss.2019.101226

Santos-Alamillos, F. J., Archer, C. L., Noel, L., Budischak, C., & Facciolo, W. (2017). Assessing the economic feasibility of the gradual decarbonization of a large electric power system. Journal of Cleaner Production, 147, 130–141. https://doi.org/10.1016/j.jclepro.2017.01.097

Scott, S. (2013). Who Shale Regulate the Fracking Industry. Villanova Environmental Law Journal, 24(1), 189–223.

SGU. (2020). Shale gas. https://www.sgu.se/en/physical-planning/energy/shale-gas/

Sica, C. E., & Huber, M. (2017). “We Can’t Be Dependent on Anybody”: The rhetoric of “Energy Independence” and the legitimation of fracking in Pennsylvania. Extractive Industries and Society, 4(2), 337–343. https://doi.org/10.1016/j.exis.2017.02.003

Sovacool, B. K. (2014). Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews, 37, 249–264. https://doi.org/10.1016/j.rser.2014.04.068

Stephenson, M. (2018). Artificial Global Warming: The ‘Fossil Economy.’ In Energy and Climate Change. https://doi.org/10.1016/b978-0-12-812021-7.00003-8

Tanaka, N. (2013). Big Bang in Japan’s energy policy. Energy Strategy Reviews, 1(4), 243–246. https://doi.org/10.1016/j.esr.2013.03.005

The Academy of Medicine Engineering and Science of Texas. (2017). Environmental and Community Impacts fo Shale Development in Texas. TX. https://doi.org/10.25238/TAMESTstf.6.2017

The Council of Canadians. (2014). A Fractivist’s Toolkit. https://canadians.org/fracktivists

The Guardian. (2017). France bans fracking and oil extraction in all of its territories. https://www.theguardian.com/environment/2017/dec/20/france-bans-fracking-and-oil-extraction-in-all-of-its-territories

Thomas, M., Pidgeon, N., & Bradshaw, M. (2018). Shale development in the US and Canada: A review of engagement practice. Extractive Industries and Society, 5(4), 557–569. https://doi.org/10.1016/j.exis.2018.07.011

Thomas, M., Pidgeon, N., Evensen, D., Partridge, T., Hasell, A., Enders, C., Herr Harthorn, B., & Bradshaw, M. (2017). Public perceptions of hydraulic fracturing for shale gas and oil in the United States and Canada. Wiley Interdisciplinary Reviews: Climate Change, 8(3), 1–19. https://doi.org/10.1002/wcc.450

Van de Graaf, T., Haesebrouck, T., & Debaere, P. (2018). Fractured politics? The comparative regulation of shale gas in Europe. Journal of European Public Policy, 25(9), 1276–1293. https://doi.org/10.1080/13501763.2017.1301985

Varela, V. B. (2020). What’s Next for Fracking Under Biden? https://www.cfr.org/in-brief/whats-next-fracking-under-biden

Wachs, E., & Engel, B. (2021). Land use for United States power generation: A critical review of existing metrics with suggestions for going forward. Renewable and Sustainable Energy Reviews, 143(January 2020), 110911. https://doi.org/10.1016/j.rser.2021.110911

Wagner, A. (2015). Shale gas: Energy innovation in a (non-)knowledge society: A press discourse analysis. Science and Public Policy, 42(2), 273–286. https://doi.org/10.1093/scipol/scu050

Wang, J., Ryan, D., & Anthony, E. J. (2011). Reducing the greenhouse gas footprint of shale gas. Energy Policy, 39(12), 8196–8199. https://doi.org/10.1016/j.enpol.2011.10.013

Wang, Z., Wennersten, R., & Sun, Q. (2017). Outline of principles for building scenarios – Transition toward more sustainable energy systems. Applied Energy, 185, 1890–1898. https://doi.org/10.1016/j.apenergy.2015.12.062

Weijermars, R., Clint, O., & Pyle, I. (2014). Competing and partnering for resources and profits: Strategic shifts ofoil Majors during the past quarter of a century. Energy Strategy Reviews, 3(C), 72–87. https://doi.org/10.1016/j.esr.2014.05.001

Wu, K., Paranjothi, G., Milford, J. B., & Kreith, F. (2016). Transition to sustainability with natural gas from fracking. Sustainable Energy Technologies and Assessments, 14, 26–34. https://doi.org/10.1016/j.seta.2016.01.003

Wu, X., Xia, J., Guan, B., Liu, P., Ning, L., Yi, X., Yang, L., & Hu, S. (2019). Water scarcity assessment based on estimated ultimate energy recovery and water footprint framework during shale gas production in the Changning play. Journal of Cleaner Production, 241, 118312. https://doi.org/10.1016/j.jclepro.2019.118312

Xu, Y. (2020). Will energy transitions impact financial systems? Energy, 194, 116910. https://doi.org/10.1016/j.energy.2020.116910

Downloads

Publicado

10/02/2022

Como Citar

CACHOLA, C. da S.; AFONSO, M. E.; SANTOS, E. M. dos; PEYERL, D. Avaliação das Possibilidades e Desafios do Gás de Xisto na Transição Energética Global. Research, Society and Development, [S. l.], v. 11, n. 3, p. e3211326282, 2022. DOI: 10.33448/rsd-v11i3.26282. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26282. Acesso em: 6 jan. 2025.

Edição

Seção

Ciências Humanas e Sociais