Uma revisão sobre o efeito do hexametafosfato de sódio na estrutura das micelas de caseína

Autores

DOI:

https://doi.org/10.33448/rsd-v11i3.26428

Palavras-chave:

Hexametafosfato de sódio; Turbidez do leite; Dissociação de micelas de caseína.

Resumo

O hexametafosfato de sódio, da sigla em inglês, SHMP, é comumente utilizado para controlar a acidez, estabilizar e retardar a gelatinização de produtos lácteos e na fusão de queijos na fabricação de queijos fundidos. Este sal dissocia as micelas de caseína presentes no leite, sequestrando íons de cálcio. Em estudos anteriores, o SHMP, se mostrou o mais eficiente em dissociar as micelas de caseína, em comparação a outros sequestrantes de cálcio. Variações na temperatura e no pH, afetam o equilíbrio mineral-proteína e interações eletrostáticas, levando a desestruturação das micelas de caseína. Visto que a turbidez de uma suspensão coloidal, como o das micelas de caseína no leite, está relacionada ao tamanho e as propriedades de espalhamento das partículas dispersas, espera-se que as dissociações das micelas de caseína reduzam a turbidez do leite. Esta revisão descreve as estratégias recentemente desenvolvidas para superar desafios relacionados a turbidez do leite, utilizando SHMP, mas não apresenta sua utilização na indústria queijeira (fundidos). A otimização das melhores condições de pH, temperatura e concentração de SHMP, podem trazer uma nova metodologia para o desenvolvimento de bebidas translúcidas e superar problemas de solubilidade de leites concentrados com alto teor proteico.

Referências

Anema, S. G., & Li, Y. (2003). Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size. Journal of dairy Research, 70(1), 73-83.

Anema, S. G. (2015). The effect of hexametaphosphate addition during milk powder manufacture on the properties of reconstituted skim milk. International Dairy Journal, 50, 58-65.

Anema, Skelte G.; & Klostermeyer. (1997). Henning. Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 C. Journal of Agricultural and Food Chemistry, v. 45, n. 4, p. 1108-1115.

Awad, R. A., Abdel-Hamid, L. B., El-Shabrawy, S. A., & Singh, R. K. (2002). Texture and microstructure of block type processed cheese with formulated emulsifying salt mixtures. LWT-Food Science and Technology, 35(1), 54-61.

Bouchoux, A., Ventureira, J., Gésan-Guiziou, G., Garnier-Lambrouin, F., Qu, P., Pasquier, C., ... & Cabane, B. (2014). Structural heterogeneity of milk casein micelles: a SANS contrast variation study. Soft Matter, 11(2), 389-399.

Dalgleish, D. G. (2011). On the structural models of bovine casein micelles—review and possible improvements. Soft matter, 7(6), 2265-2272.

Dalgleish, D. G., & Corredig, M. (2012). The structure of the casein micelle of milk and its changes during processing. Annual review of food science and technology, 3, 449-467.

Eshpari, H., Tong, P. S., & Corredig, M. (2014). Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk. Journal of dairy science, 97(12), 7394-7401.

ICL, Especificação de Produto: Hexameta Fosfato de Sódio Grau Alimentício - Origem: EUA; EP-022 - Rev. 07.

Fox, P. F., McSweeney, P. L., Cogan, T. M., & Guinee, T. P. (Eds.). (2004). Cheese: Chemistry, Physics and Microbiology, Volume 1: General Aspects. Elsevier.

Gao, R., van Halsema, F. E. D., Temminghoff, E. J. M., van Leeuwen, H. P., van Valenberg, H. J. F., Eisner, M. D., & van Boekel, M. A. J. S. (2010). Modelling ion composition in simulated milk ultrafiltrate (SMUF) II. Influence of pH, ionic strength and polyphosphates. Food chemistry, 122(3), 710-715.

Glantz, M., Devold, T. G., Vegarud, G. E., Månsson, H. L., Stålhammar, H., & Paulsson, M. (2010). Importance of casein micelle size and milk composition for milk gelation. Journal of Dairy Science, 93(4), 1444-1451.

Gonzalez-Jordan, A., Thomar, P., Nicolai, T., & Dittmer, J. (2015). The effect of pH on the structure and phosphate mobility of casein micelles in aqueous solution. Food Hydrocolloids, 51, 88-94.

Ye, R., & Harte, F. (2013). Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of dairy science, 96(2), 799-805.

Holt, C., Carver, J. A., Ecroyd, H., & Thorn, D. C. (2013). Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. Journal of dairy science, 96(10), 6127-6146.

Ingham, B., Smialowska, A., Erlangga, G. D., Matia-Merino, L., Kirby, N. M., Wang, C., ... & Carr, A. J. (2016). Revisiting the interpretation of casein micelle SAXS data. Soft Matter, 12(33), 6937-6953.

de Kort, E., Minor, M., Snoeren, T., van Hooijdonk, T., & van der Linden, E. (2011). Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions. International Dairy Journal, 21(12), 907-913.

de Kort, E. J. (2012). Influence of calcium chelators on concentrated micellar casein solutions: from micellar structure to viscosity and heat stability.

de Kruif, C. G. (2014). The structure of casein micelles: A review of small-angle scattering data. Journal of Applied Crystallography, 47(5), 1479-1489.

de Kruif, C. G., & Huppertz, T. (2012). Casein micelles: size distribution in milks from individual cows. Journal of agricultural and food chemistry, 60(18), 4649-4655.

Holt, C., De Kruif, C. G., Tuinier, R., & Timmins, P. A. (2003). Substructure of bovine casein micelles by small-angle X-ray and neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 213(2-3), 275-284.

Lazzaro, F., Saint-Jalmes, A., Violleau, F., Lopez, C., Gaucher-Delmas, M., Madec, M. N., ... & Gaucheron, F. (2017). Gradual disaggregation of the casein micelle improves its emulsifying capacity and decreases the stability of dairy emulsions. Food Hydrocolloids, 63, 189-200.

Lima, E. C. D. O., Alcantara, G. B., Damasceno, F. C., Moita Neto, J. M., & Galembeck, F. (2010). Fracionamento de polifosfato de sódio e caracterização por RMN de 31P: um experimento para aulas de físico-química. Química Nova, 33, 1991-1995.

McCarthy, N. A., Power, O., Wijayanti, H. B., Kelly, P. M., Mao, L., & Fenelon, M. A. (2017). Effects of calcium chelating agents on the solubility of milk protein concentrate. International Journal of Dairy Technology, 70(3), 415-423.

McMahon, D. J., & McManus, W. R. (1998). Rethinking casein micelle structure using electron microscopy. Journal of Dairy Science, 81(11), 2985-2993.

Mizuno, R., & Lucey, J. A. (2005). Effects of emulsifying salts on the turbidity and calcium-phosphate–protein interactions in casein micelles. Journal of Dairy Science, 88(9), 3070-3078.

Mizuno, R., & Lucey, J. A. (2007). Properties of milk protein gels formed by phosphates. Journal of Dairy Science, 90(10), 4524-4531.

Nogueira, M. H., Humblot, L., Singh, R. P., Dieude-Fauvel, E., Doumert, B., Nasser, S., ... & Peixoto, P. P. (2021). The heterogeneous substructure of casein micelles evidenced by SAXS and NMR in demineralized samples. Food Hydrocolloids, 117, 106653.

Orlien, V., Boserup, L., & Olsen, K. (2010). Casein micelle dissociation in skim milk during high-pressure treatment: Effects of pressure, pH, and temperature. Journal of dairy science, 93(1), 12-18.

Pandalaneni, K., Amamcharla, J. K., Marella, C., & Metzger, L. E. (2018). Influence of milk protein concentrates with modified calcium content on enteral dairy beverage formulations: Physicochemical properties. Journal of dairy science, 101(11), 9714-9724.

Power, O. M., Fenelon, M. A., O'Mahony, J. A., & McCarthy, N. A. (2019). Dephosphorylation of caseins in milk protein concentrate alters their interactions with sodium hexametaphosphate. Food chemistry, 271, 136-141.

Power, O. M., Fenelon, M. A., O'Mahony, J. A., & McCarthy, N. A. (2020). Influence of sodium hexametaphosphate addition on the functional properties of milk protein concentrate solutions containing transglutaminase cross-linked proteins. International Dairy Journal, 104, 104641.

Ramchandran, L., Luo, X., & Vasiljevic, T. (2017). Effect of chelators on functionality of milk protein concentrates obtained by ultrafiltration at a constant pH and temperature. Journal of Dairy Research, 84(4), 471-478.

Ranadheera, C. S., Liyanaarachchi, W. S., Dissanayake, M., Chandrapala, J., Huppertz, T., & Vasiljevic, T. (2019). Impact of shear and pH on properties of casein micelles in milk protein concentrate. Lwt, 108, 370-376.

Shinde, A. P., Meena, G. S., & Handge, J. U. (2021). Effect of sodium triphosphate and sodium hexametaphosphate on properties of buffalo milk protein concentrate 60 (BMPC60) powder. Journal of Food Science and Technology, 58(5), 1996-2006.

Silva, N. N., Casanova, F., Pinto, M. D. S., Carvalho, A. F. D., & Gaucheron, F. (2019). Casein micelles: from the monomers to the supramolecular structure. Brazilian Journal of Food Technology, 22.

Sinaga, H., Bansal, N., & Bhandari, B. (2017). Effects of milk pH alteration on casein micelle size and gelation properties of milk. International Journal of Food Properties, 20(1), 179-197.Singh, H. (2004). Heat stability of milk. International journal of dairy technology, 57(2‐3), 111-119.

Waugh, D. F. (1958). The interactions of α s-β- and κ-caseins in micelle formation. Discussions of the Faraday Society, 25, 186-192.

Wolfschoon‐Pombo, A. F., Böttger, D., & Lösche, K. (2012). Pufferkapazität mikrofiltrierter Magermilchkonzentrate. Chemie Ingenieur Technik, 4(84), 465-474.

Xu, Y., Liu, D., Yang, H., Zhang, J., Liu, X., Regenstein, J. M. & Zhou, P. (2016). Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocolloids, 60, 5.

Ye, R., & Harte, F. (2013). Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of dairy science, 96(2), 799-805.

Downloads

Publicado

22/02/2022

Como Citar

OLIVEIRA, I. C. de .; PINTO, C. B. dos A.; CAMPOS, N. da S.; POMBO, A. F. W.; WALTER, A.; PERRONE, Ítalo T.; STEPHANI, R. Uma revisão sobre o efeito do hexametafosfato de sódio na estrutura das micelas de caseína. Research, Society and Development, [S. l.], v. 11, n. 3, p. e30611326428, 2022. DOI: 10.33448/rsd-v11i3.26428. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26428. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas