Potencial uso dos resíduos de conchas de moluscos: uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v11i3.26614

Palavras-chave:

Resíduo da concha de molusco; Desequilíbrio ambiental; Aplicações; Sustentabilidade.

Resumo

O Brasil é um grande produtor de moluscos bivalves da América Latina. A atividade de malacocultura é reconhecida mundialmente como uma importante alternativa de geração de empregos, renda e alimento, que tem contribuído para a fixação de comunidades tradicionais em seus locais de origem de modo mais sustentável. Porém, as densidades elevadas de moluscos bivalves produzidas pelo cultivo podem causar impactos ambientais provocando desequilíbrios nos ecossistemas, devido a uma maior produção dos resíduos sólidos das conchas, os quais se originam a partir da retirada dos moluscos dos interiores das conchas. O objetivo deste artigo é apresentar uma revisão bibliográfica realizada a partir da literatura vigente sobre a estrutura morfológica da concha de molusco e as possíveis aplicações dos seus resíduos. A estrutura externa da concha é colorida (perióstraco), composta por uma camada intermediária com placas de aragonita comprimidas com espessura de cerca de 0,5 µm, incorporada em uma fina matriz orgânica e por outra calcificada contendo agulhas de calcita de vários comprimentos e diâmetros, e por uma camada mais interna nacarada também calcária. As conchas de moluscos são constituídas principalmente por carbonato de cálcio (CaCO3). Por isso, os resíduos da concha têm sido utilizados na fabricação de blocos e pavimentos de concreto com absorção de água baixa e resistentes a compressão; usadas como suplementos alimentares que auxiliam no combate e prevenção da osteoporose; como carga mineral em polímeros, na fabricação de materiais compósitos ecologicamente mais interessantes e com propriedades mecânicas e térmicas melhoradas, conferindo aos mesmos rigidezes e estabilidade térmica.

Biografia do Autor

Tainã Fabiane da Silva Fagundes, Universidade Federal da Paraíba

Programa de Pós Graduação em Ciência e Engenharia de Materias da Universidade Federal da Paraíba.

Lucineide Balbino da Silva, Universidade Federal da Paraíba

Programa de Pós Graduação em Ciência e Engenharia de Materias da Universidade Federal da Paraíba.

Referências

Ademolu, K. O., Idowu, A. B., Mafiana, C. F., & Osinowo, O. A. (2007). Performance, proximate and minerals analysis of African giant land snail (Archachatina marginata) fed different nitrogen sources. Tropical Veterinarian, 25(4), 124-131.

Agbelusi, E. A., & Ejidike, B. N. (1992). Utilization of the Giant African Land Snail, Archachatina marginata in the humid area of Nigeria. Journal of Tropical Agriculture, 69, 88-92.

Bartezak, Z., A. S.A., Cohen, R. E., & Weinberg, M. (1999). Toughness mechanism in semi-crystalline polymer blends; II. High-density polyethylene toughened with calcium carbonate filler particles. Elsevier Science Ltd. p. 2347-2365.

Batista, B. B., Silva, H. R. T., Egert, P., Marcondes, L. F. T., & Santos, M. V. (2009). Bloco Verde – Reaproveitamento de Resíduos da Construção Civil e de Conchas de Ostras e Mariscos. 1º Congresso Internacional de Tecnologias para o Meio Ambiente, Bento Gonçalves, RS, Brasil.

Bezerra, U.T. A. ; Almeida, F. L. P; Silva, L. B; Barbosa, N. P; Passos, T. A, & Cavalcante, D. G. L. (2011). Production of Filler Aggregate from Waste of Bivalves Molluscs Shells. Jornal of Civil Engineering and Architecture, 5: 363-367.

Bielefeld U, Zierold K., Korje K. H., & Becker W (1992) Calcium localization in the shell-forming tissue of the freshwater snail, Biomphalaria glabrata: a comparative study of various methods for localizing calcium. Histochem J 24:927–938.

Bocchese, D. C. F. (2008). Eliminação de matéria orgânica de conchas de ostras por processo biológico. Repositório Institucional Universidade Federal de Santa Catarina, Florianopolis, SC.

Boicko, A. L., Hotza, D. & Santanna, F. S. P. (2004). Utilização de Conchas Da Ostra Crassostrea gigas Como Carga Para Produtos de Policloreto de Vinila (PVC). IV Simpósio Internacional de Qualidade Ambiental.

Cariolou, M. A., & Morse, D. (1988). Journal of Computational Physics B 157, 717.

Checa, A. G., Cartwright, J. H., & Willinger, M. G. (2009a) The key role of the surface membrane in why gastropod nacre grows in towers. Proceedings of the National Academy of Sciences 106:38–43.

De Paula, S. M, & Silveira, M. (2006). Uma abordagem de parâmetros de biomineralização em um sistema constituído por carbonato de cálcio. Biblioteca Digital USP, Brasil.

Essabir, H., Bensalah, M. Q., Rodrigue, D., Bouhfid, R., & Qaiss, A. K. (2017) Acomparison between bio- and mineral calcium carbonate onthe properties of polypropylene composites. Construction and Building Materials; 134:549–55.

Finkelstein, A. D., Wohlt, J. E., & Emmanuele, S. M. (1993). Composition and nutritive value of ground sea clam shells as calcium supplements for lactating Holsten cows. Journal of Dairy Science, 76(2), 582-589.

Firmino, H. C. T., Chagas, T. F., Melo, P. M. A., & Silva, L. B. (2017). Caracterização de compósitos particulados de polietileno de alta densidade/pó de concha de molusco. Matéria (Rio J.), 22(4), 1-12.

Feng, Y., Ashok, B., Madhukar, K., Zhang, J., Zhang, J., & Reddy, K. O. (2014). Preparation and characterization of polypropylenecarbonate bio-filler (eggshell powder) composite films. International Journal of Polymer Analysis and Characterization 2014:19:637–47.

Gilbert, P. U., Metzler, R. A., Zhou, D., Scholl, A., Doran, A., Young, A., Kunz, M., Tamura, N., & Coppersmith, S. N. (2008). Gradual ordering in red abalone nacre. Journal of the American Chemical Society 130:17519–17527.

Hare, P. E., & Abelson, P. H. (1965). Year Book, Carnegie Inst. Washington, 65, 223.

Hodasi, J. K. N. (1982). The effect of different light regimes on the behavior and biology of Achatina achatina. Journal of Molluscan Studies, 48, 1-7.

Idowu, A. B., Somide, O. M., & Ademolu, K. O. (2008). Comparative Analysis of the chemical composition of the haemolymph, flesh and the microflora content of the guts of some African land snails in Abeokuta, Nigeria. Tropical Veterinarian, 26(1&2), 20-29.

Kwon, H., Lee, C. W., Jun, B. S., Yun, J., Weon, S. Y., & Koopman, B. (2003). Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling, Masan, Coréia do Sul, 41, 75-82. https://projetoconchas.ufsc.br/upload/arquivos/1197924433.PDF

Li, H. Y., Tan, Y. Q., Zhang, L., Zhang, Y. X., Song, Y. H., Sim, Y., & Xia, M. S. (2012). Bio-filler from waste shellfish shell: Preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of Hazardous Materials, 217–218, 256–262.

Luyt, A. S., Dramicanin, M. D., Antic, Z., & Djokovic, V. (2009). Morphology,mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polymer Testing 28:348–56.

Manish, K., Sharma, C. S., Pradeep, U., Vishal, V., Pandev, K. N., & VijaiK. (2012) Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment onmechanical, thermal, and morphological performance of composites. Journal of Applied Polymer Science, 124:2649–56.

Mann S. (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York.

Mann, S. (1988). Molecular recognition in biomineralization. Nature 332:119–124.

Marin, F., Pokroy, B., Luquet, G., Layrolle, P., & De Groot, K. (2007). Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials 28:2368–2377.

Masaya, K., Naoki, H., Makoto, K., Arimitsu, U., & Akane, O. (1997). Preparation and mechanical properties of polypropylene clayhybrids. Macromolecules, 30:6333–8.

Melo, P. M. A., Macêdo, O. B., Barbosa, G. P., Ueki, M. M., & Silva, L. B. (2019). High-density polyethylene/mollusk shell-waste composites: effects of particle size and coupling agent on morphology, mechanical and thermal properties. Journal of Materials Research and Technology, 8(2) 1915-1925.

Melo, P. M. A., Macêdo, O. B., Barbosa, G. P., Santos, A. S. F., & Silva, L. B. (2021). Reuse of Natural Waste to Improve the Thermal Stability, Stiffness, and Toughness of Postconsumer Polypropylene Composites. Journal of Polymers and the Environment; 29, 538–551. https://doi.org/10.1007/s10924-020-01907-4

Munusamy, Y., Sethupathi, S., & Choon, C. H. (2019). Potential use of waste cockle shell as filler for thermoplastic composite. Journal of Material Cycles and Waste Management, 21:1063.

Nudelman, F., Shimoni, E., Klein, E., Rousseau, M., Bourrat, X., Lopez, E., Addadi, L., & Weiner, S. (2008). Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: an environmental- and cryo-scanning electron microscopy study. Journal of Structural Biology 162:290–300.

Pardo, S. G., Bernal, C., Ares, A., Abad, M. J., & Cano, J. (2010). Rheological, thermal, and mechanical characterization of Fly Ashthermoplastic composites with different coupling agents. Polymer Composite 31:1722.

Rousseau, M., Lopez, E., Stempfle, P., Brendle, M., Franke, L., Guette, A., Naslain, R., & Bourrat, X. (2005). Multiscale structure of sheet nacre. Biomaterials 26:6254–6262.

Saminathan, K., Selvakumar, P., & Bhatnagar, N. (2008). Fracture studiesof polypropylene/nanoclay composite. Part II: failure mechanism under fracture loads. Polymer Testing 27:453–8.

Santanna, F. S. P. (2007). Projeto Valorização dos resíduos da Maricultura. Sub-projeto: Soluções tecnológicas para aproveitamento de conchas de ostras. Universidade Federal de Santa Catarina, Florianópolis.

Shao-Yun Fu, X. Q. F., Bernd L., & Yiu-Wing M. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Elsevier Composites: Part B 39. 933-961.

Zhitong, Y., Meishen,g X., Liugin, G., Tao, C., Haiyan, L., Ying, Y., & Zheng, H. (2014). Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3and shell-waste derived bio-fillers. Fiber Polym 15:1278.

Yao, Z.T., Chen, T., Li, H.Y., Xia, M.S., Ye, Y. & Zheng. (2013). Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials, 262, 212-217.

Yoon, Gil-Lim; Kim, Byung-Tak; Kim, Baeck-Oon; Han, Sang-Hun. (2003). Chemical–mechanical characteristics of crushed oyster-shell. Coastal & Harbor Engineering Research Division, Korea Ocean Research & Development Institute, 1270, Sadong, Ansan City, 425-744, South Korea.

Yusuff, A. A., & Oseni, O. A. (2004). Nutritional value and functional properties of pond snail (Lymnae stagnalis). International Conference on Science & National Development. Department of Chemistry, University of Agriculture, PMB 2240. Abeokuta, Nigeria.

Weiss, I. (2010). Jewels in Pearl. ChemBioChem 11:297–300.

Downloads

Publicado

02/03/2022

Como Citar

FAGUNDES, T. F. da S.; SILVA, L. B. da. Potencial uso dos resíduos de conchas de moluscos: uma revisão . Research, Society and Development, [S. l.], v. 11, n. 3, p. e43011326614, 2022. DOI: 10.33448/rsd-v11i3.26614. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26614. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão