Potencial antioxidante e toxicológico do extrato hidroalcoólico da casca do Ipê-amarelo Antioxidant and toxicological potential of the Golden trumpet hydroalcoholic stem bark extract
DOI:
https://doi.org/10.33448/rsd-v9i4.2936Palavras-chave:
Fitoquímica; Terpenos; Cromatografia; Medicina tradicional; Tabebuia.Resumo
Handroanthus chrysotrichus é uma árvore da família Bignoniaceae, conhecida como ipê-amarelo e distribui-se pelo Nordeste, Sudeste e Sul do Brasil. Suas flores, caule e casca são usadas para fins medicinais no tratamento de doenças relacionadas ao sistema cardiovascular e imunológico. Esse estudo tem por objetivos avaliar o perfil fitoquímico, espectro de atividade biológica, capacidade antioxidante e potencial toxicológico do extrato da casca de H. chrysotrichus. O extrato hidroetanólico foi obtido por percolação e liofilizado. Os compostos presentes no extrato foram analisados por métodos colorimétricos e GC-MS. A avaliação do espectro de atividade biológica foi realizada in silico. O poder antioxidante foi determinado pela investigação da capacidade antioxidante total, capacidade quelante de ferro, ensaios DPPH• e ABTS•+, e teste de degradação da desoxirribose. A capacidade de inibição da lipoperoxidação induzida por Fe+ foi avaliada em cérebros e fígados de camundongos. Náuplios de Artemia salina foram utilizados para avaliação da dose letal mediana. A toxicidade foi avaliada por simulação computacional e in vitro em linfócitos humanos. Como resultados, os métodos colorimétricos sugerem altos níveis de polifenóis e os dados de GC-MS indicaram a ocorrência de α-curcumeno, β-bisaboleno, 4- (4-metilfenil) pentanal, ácido pentanóico e acetato de isoamil no extrato da casca. Simulações computacionais apontaram atividades biológicas que estão de acordo com seu uso tradicional. A casca do extrato exibiu atividade antioxidante em diversos ensaios e foi efetiva em proteger cérebros e fígados de camundongos da lipoperoxidação induzida por Fe+. A casca de H. chrysotrichus demonstrou uma toxicidade média em A. salina com potencial presença de compostos bioativos. Em geral, os compostos apresentaram baixa probabilidade de toxicidade nas previsões in silico. Não houve citotoxicidade e genotoxicidade nos ensaios realizados com linfócitos humanos. Os resultados indicam que a casca de H. chrysotrichus possui compostos com espectro de atividade biológica e baixo potencial toxicológico. Além disso, mostra capacidade antioxidante e ação protetora contra a peroxidação lipídica. Os dados apresentados apoiam o uso medicinal do ipê-amarelo e apontam o mesmo como um extrato promissor para avaliações in vivo.Referências
AlShebly, M. M., AlQahtani, F. S., Govindarajan, M., Gopinath, K., Vijayan, P., & Benelli, G. (2017). Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and Japanese encephalitis mosquito vectors. Ecotoxicology and Environmental Safety, 137(2017), 149–157. https://doi.org/10.1016/j.ecoenv.2016.11.028
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
Bieski, I. G. C., Leonti, M., Arnason, J. T., Ferrier, J., Rapinski, M., Violante, I. M. P., Balogun, S. O., Pereira, J. F. C. A., Figueiredo, R. D. C. F., Lopes, C. R. A. S., Silva, D. R. da, Pacini, A., Albuquerque, U. P., & Oliveira, D. T. (2015). Ethnobotanical study of medicinal plants by population of Valley of Juruena Region , Legal Amazon , Mato Grosso , Brazil. Journal of Ethnopharmacology, 173, 383–423. https://doi.org/10.1016/j.jep.2015.07.025
Bolson, M., Hefler, S. R., Dall’Oglio Chaves, E. I., Gasparotto Junior, A., & Cardozo Junior, E. L. (2015). Ethno-medicinal study of plants used for treatment of human ailments, with residents of the surrounding region of forest fragments of Paraná, Brazil. Journal of Ethnopharmacology, 161, 1–10. https://doi.org/10.1016/j.jep.2014.11.045
Boriollo, M. F. G., Silva, T. A., Rodrigues-Netto, M. F., Silva, J. J., Marques, M. B., Dias, C. T. S., Höfling, J. F., Resck, M. C. C., Oliveira, N. M. S., Boriollo, M. F. G., Silva, T. A., Rodrigues-Netto, M. F., Silva, J. J., Marques, M. B., Dias, C. T. S., Höfling, J. F., Resck, M. C. C., & Oliveira, N. M. S. (2017). Reduction of doxorubicin-induced genotoxicity by Handroanthus impetiginosus in mouse bone marrow revealed by micronucleus assay. Brazilian Journal of Biology, 78(1), 1–12. https://doi.org/10.1590/1519-6984.18515
Castellanos, J. R. G., Prieto, J. M., & Heinrich, M. (2009). Red Lapacho (Tabebuia impetiginosa) — A global ethnopharmacological commodity? Journal of Ethnopharmacology, 121, 1–13. https://doi.org/10.1016/j.jep.2008.10.004
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
Choi, C. W., Kim, S. C., Hwang, S. S., Choi, B. K., Ahn, H. J., Lee, M. Y., Park, S. H., & Kim, S. K. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163(6), 1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1
Costa, E. V. S., Brígido, H. P. C., Silva, J. V. da S. e, Coelho-Ferreira, M. R., Brandão, G. C., & Dolabela, M. F. (2017). Antileishmanial Activity of Handroanthus serratifolius (Vahl) S. Grose (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine, 2017, 1–6. https://doi.org/10.1155/2017/8074275
Drwal, M. N., & Griffith, R. (2013). Combination of ligand- and structure-based methods in virtual screening. Drug Discovery Today. Technologies, 10(3), e395-401. https://doi.org/10.1016/j.ddtec.2013.02.002
Ferreira, D. T., Oliveira, A. B. de, & Castro, C. R. de. (1989). Constituintes químicos da Tabebuia impetiginosa (MART) Standl. Bignoniaceae. Semina: Exact and Technological Sciences, 10(4), 272–273.
Fraga, L. N., Oliveira, A. K. de S., Aragão, B. P., Silva, A. M. de O. e, Wartha, E. R. S. de A., Bacci, L., Lobato, L. P., & Carvalho, I. M. M. de. (2020). Physico-chemical characterization of the pulp and peel of Brazilian Pitomba (Talisia esculenta (A. St.-Hill.) Radlk). Research, Society and Development, 9(1), 1–14.
Garcez, F. R., Garcez, W. S., Mahmoud, T. S., Figueiredo, P. de O., & Resende, U. M. (2007). Novos constituintes químicos das cascas do caule de Tabebuia heptaphylla. Quimica Nova, 30(8), 1887–1891. https://doi.org/10.1590/S0100-40422007000800017
Grazziotin, J. D., Schapoval, E. E. S., Chaves, C. G., Gleye, J., & Henriques, A. T. (1992). Phytochemical and analgesic investigation of Tabebuia chrysotricha. Journal of Ethnopharmacology, 36(3), 249–251. https://doi.org/10.1016/0378-8741(92)90051-R
Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4a). Oxford University Press Inc.
Jardim Botânico do Rio de Janeiro. (2018). Flora do Brasil 2020 em construção. Handroanthus Chrysotrichus. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB114078
Jimenez-Gonzalez, F. J., Vélez-Gómez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepúlveda-Arias, J. C. (2018). Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC. Pharmacognosy Magazine, 14(55), 25–31.
Júnior, C. V. (2003). Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quimica Nova, 26(3), 390–400.
Kiage-mokua, B. N., Roos, N., & Schrezenmeir, J. (2012). Lapacho Tea (Tabebuia impetiginosa) Extract Inhibits Pancreatic Lipase and Delays Postprandial Triglyceride Increase in Rats †. Phytotherapy Research, 26, 1878–1883.
Kim, M.-G., Jeon, J. H., & Lee, H.-S. (2013). Larvicidal activity of the active constituent isolated from Tabebuia avellanedae bark and structurally related derivatives against three mosquito species. Journal of Agricultural and Food Chemistry, 61(45), 10741–10745. https://doi.org/10.1021/jf403679h
Lee, M. H., Choi, H. M., Hahm, D. H., Her, E., Yang, H. I., Yoo, M. C., & Kim, K. S. (2012). Analgesic and anti-inflammatory effects in animal models of an ethanolic extract of Taheebo, the inner bark of Tabebuia avellanedae. Molecular Medicine Reports, 6(4), 791–796. https://doi.org/10.3892/mmr.2012.989
Lima, A. R. N., Macedo, R. G., Batista, G. G., Câmara, G. B., Lima, R. de F., & Oliveira, T. K. B. de. (2020). Antimicrobial and anti-inflammatory activity of Anadenanthera colubrina (Vell.) Brenan. Research, Society and Development, 9(1), 1–12.
Liu, Y.-J. (2006). Thymic stromal lymphopoietin: master switch for allergic inflammation. The Journal of Experimental Medicine, 203(2), 269–273. https://doi.org/10.1084/jem.20051745
Magalhães, L. M., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1–19. https://doi.org/10.1016/J.ACA.2008.02.047
McLaughlin, J. L. (1991). Crown gall tumors on potato discs and brine shrimp lethality: two simple bioassays for higher plant screening and fractions. In P.M.DEY & J. B. HARBONE (Eds.), Methods in Plant Biochemistry (1st ed., pp. 1–32). Academic Press.
Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica, 45(05), 31–34. https://doi.org/10.1055/s-2007-971236
Mizuno, N., Abe, K., Morishita, Y., Yamashita, S., Segawa, R., Dong, J., Moriya, T., Hiratsuka, M., & Hirasawa, N. (2017). Pentanoic acid induces thymic stromal lymphopoietin production through G q/11 and Rho-associated protein kinase signaling pathway in keratinocytes. International Immunopharmacology, 50, 216–223. https://doi.org/10.1016/j.intimp.2017.06.024
Nurmi, K., Ossipov, V., Haukioja, E., & Pihlaja, K. (1996). Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). Journal of Chemical Ecology, 22(11), 2023–2040. https://doi.org/10.1007/BF02040093
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
OSIRIS Properties Explorer. (n.d.). Retrieved September 16, 2018, from https://www.organic-chemistry.org/prog/peo
Park, B.-S., Lee, K.-G., Shibamoto, T., Lee, S.-E., & Takeoka, G. R. (2003). Antioxidant Activity and Characterization of Volatile Constituents of Taheebo (Tabebuia impetiginosa Martius ex DC). Journal of Agricultural and Food Chemistry, 51, 295–300.
Park, B., Lee, H., Lee, S., Piao, X., Takeoka, G. R., Wong, R. Y., Ahn, Y., & Kim, J. (2006). Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. Journal of Ethnopharmacology, 105, 255–262. https://doi.org/10.1016/j.jep.2005.11.005
Perez, J. E., Isaza, G., Bueno, J. G., Arango, M. C., Hincapié, B. L., Nieto, A. M., & Londoño, D. P. (2004). Efecto de los extractos de Phenax rugosus, Tabebuia chrysantha, Althernantera williamsii y Solanum dolichosepalum sobre el leucograma y la producción de anticuerpos en ratas. REVISTA MÉDICA DE RISARALDA, 10(2), 13–21.
Pires, D. E. V, Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
PreADMET web-based, Online. (n.d.). Retrieved September 16, 2018, from https://preadmet.bmdrc.kr/
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdinum complex: specific application to the determination of Vitamin E. Anal Biochem, 269, 337–341.
Puntel, R. L., Nogueira, C. W., & Rocha, J. B. T. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochemical Research, 30(2), 225–235. https://doi.org/10.1007/s11064-004-2445-7
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Reis, F. P., Senna Bonfa, I. M., Cavalcante, R. B., Okoba, D., De Souza Vasconcelos, S. B., Candeloro, L., De Oliveira Filiu, W. F., Duenhas Monreal, A. C., Da Silva, V. J., Santa Rita, P. H., Carollo, C. A., & Toffoli-Kadri, M. C. (2014). Tabebuia aurea decreases inflammatory, myotoxic and hemorrhagic activities induced by the venom of Bothrops neuwiedi. Journal of Ethnopharmacology, 158(PART A), 352–357. https://doi.org/10.1016/j.jep.2014.10.045
Ribeiro, R. V., Bieski, I. G. C., Balogun, S. O., & Martins, D. T. de O. (2017). Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, 205(April), 69–102. https://doi.org/10.1016/j.jep.2017.04.023
Salgueiro, A.C.F., Folmer, V., Bassante, F. E. M., Cardoso, M. H. S., da Rosa, H. S., & Puntel, G. O. (2018). Predictive antidiabetic activities of plants used by persons with Diabetes mellitus. Complementary Therapies in Medicine, 41, 1–9. https://doi.org/10.1016/j.ctim.2018.08.009
Salgueiro, A. C. F., Folmer, V., da Silva, M. P., Mendez, A. S. L., Zemolin, A. P. P., Posser, T., Franco, J. L., Puntel, R. L., Puntel, G. O., Puntel, R. L., Puntel, G. O. (2016). Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2016, 1–9. https://doi.org/10.1155/2016/8902954
Sharma, J. N., A Al-Omran, & Parvathy, S. S. (2007). Review Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15, 252–259. https://doi.org/10.1007/s10787-007-0013-x
Sims, J. E., Williams, D. E., Morrissey, P. J., Garka, K., Foxworthe, D., Price, V., Friend, S. L., Farr, A., Bedell, M. A., Jenkins, N. A., Copeland, N. G., Grabstein, K., & Paxton, R. J. (2000). Molecular cloning and biological characterization of a novel murine lymphoid growth factor. The Journal of Experimental Medicine, 192(5), 671–680. http://www.ncbi.nlm.nih.gov/pubmed/10974033
Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191. https://doi.org/10.1016/0014-4827(88)90265-0
Soares, J. J., Rodrigues, D. T., Gonçalves, M. B., Lemos, M. C., Gallarreta, M. S., Bianchini, M. C., Gayer, M. C., Puntel, R. L., Roehrs, R., & Denardin, E. L. G. (2017). Paraquat exposure-induced Parkinson’s disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomedicine and Pharmacotherapy, 95(July), 245–251. https://doi.org/10.1016/j.biopha.2017.08.073
Topping, D. L. (1996). Short-chain fatty acids produced by intestinal bacteria. Asia Pacific Journal of Clinical Nutrition, 5, 15–19.
Torres, S., Pandey, A., & Castro, G. R. (2010). Banana flavor: Insights into isoamyl acetate production. Cell, 549(1), 776–802.
Twardowschy, A., Freitas, C. S., Baggio, C. H., Mayer, B., dos Santos, A. C., Pizzolatti, M. G., Zacarias, A. A., dos Santos, E. P., Otuki, M. F., & Marques, M. C. A. (2008). Antiulcerogenic activity of bark extract of Tabebuia avellanedae, Lorentz ex Griseb. Journal of Ethnopharmacology, 118(3), 455–459. https://doi.org/10.1016/j.jep.2008.05.013
Tyagi, A. K., Prasad, S., Yuan, W., Li, S., & Aggarwal, B. B. (2015). Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: Comparison with curcumin. Investigational New Drugs, 33(6), 1175–1186. https://doi.org/10.1007/s10637-015-0296-5
Vertuani, S., Angusti, A., & Manfredini, S. (2004). The Antioxidants and Pro-Antioxidants Network: An Overview. Current Pharmaceutical Design, 10(14), 1677–1694. https://doi.org/10.2174/1381612043384655
Wright, C. R., & Setzer, W. N. (2013). Volatile components of organ pipe cactus , Stenocereus thurberi Engelm., growing in the Organ Pipe Cactus National Monument and the Arizona-Sonora Desert Museum. American Journal of Essential Oils and Natural Products, 1(3), 19–22. https://doi.org/10.1086/497361
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.