Gaseificação da biomassa em água supercrítica como tecnologia de produção de hidrogênio
DOI:
https://doi.org/10.33448/rsd-v11i9.31296Palavras-chave:
Água; Supercrítico; Hidrogênio; Biomassa; Gaseificação.Resumo
O interesse em utilizar a biomassa para produção de energia tem crescido consideravelmente. Além do reaproveitamento de resíduos de indústrias agrícolas e alimentícias a energia da biomassa evita o aumento de dióxido de carbono na atmosfera. A biomassa residual pode ser utilizada de diversas maneiras com o objetivo de gerar energia. Uma delas, e talvez a mais eficiente, é a produção de hidrogênio. O estudo da produção de hidrogênio por fontes alternativas cresceu nos últimos anos em função da necessidade da utilização de fontes renováveis e do desenvolvimento tecnológico de células a combustível. Dentre várias alternativas, a gaseificação em água supercrítica tem a vantagem de não ser específica para determinado resíduo (agrícolas ou de efluentes de processos diversos). Durante a gaseificação em água supercrítica, ou seja, em temperaturas e pressões maiores ou iguais a 374 °C e 22.1 MPa, respectivamente, são produzidos em grande parte hidrogênio (H2) e dióxido de carbono (CO2). No entanto, por atingir temperaturas e pressões elevadas, os materiais para construção e manutenção da planta de produção merecem atenção especial e o alto custo operacional torna-se o maior obstáculo para o desenvolvimento desta tecnologia. Contudo, verifica-se que, além de grande eficiência energética, a utilização de hidrogênio em células a combustível gera apenas água como subproduto, tornando, portanto, a substituição de processos que utilizam combustíveis fósseis por processos que utilizem fontes alternativas, conveniente e oportuna. A tecnologia de geração de hidrogênio em água supercrítica atende a esse anseio e novos estudos vêm sendo realizados para torná-la mais viável.
Referências
Antal, M. J., Allen, S. G., Schulman, D., Xu, X., & Divilio, R. J. (2000). Biomass Gasification in Supercritical Water. Industrial & Engineering Chemistry Research, 39(11), 4040–4053. https://doi.org/10.1021/ie0003436
Arita, T., Nakahara, K., Nagami, K., & Kajimoto, O. (2003). Hydrogen generation from ethanol in supercritical water without catalyst. Tetrahedron Letters, 44(5), 1083–1086. https://doi.org/10.1016/S0040-4039(02)02704-1
Azadi, P., & Farnood, R. (2011). Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. International Journal of Hydrogen Energy, 36(16), 9529–9541. https://doi.org/10.1016/j.ijhydene.2011.05.081
Boukis, N., Diem, V., Habicht, W., & Dinjus, E. (2003). Methanol Reforming in Supercritical Water. Industrial & Engineering Chemistry Research, 42(4), 728–735. https://doi.org/10.1021/ie020557i
Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 47(3), 373–381. https://doi.org/10.1016/j.supflu.2008.09.002
Chang, S., & Liu, Y. (2007). Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation. Journal of Environmental Sciences (China), 19(12), 1430–1435. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18277645
Darr, J. A., & Poliakoff, M. (1999). New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids.
Demirbas, A. (2009a). Pyrolysis Mechanisms of Biomass Materials. Energy Sources Part A Recovery Utilization And Environmental Effects, 31(13), 1186–1193. https://doi.org/10.1080/15567030801952268
Demirbas, A. (2009b). Thermochemical Conversion Processes. In Biofuels (pp. 261–304). https://doi.org/10.1007/978-1-84882-011-1_6
DiLeo, G. J., & Savage, P. E. (2006). Catalysis during methanol gasification in supercritical water. The Journal of Supercritical Fluids, 39(2), 228–232. https://doi.org/10.1016/j.supflu.2006.01.004
Erkonak, H., Söğüt, O. Ö., & Akgün, M. (2008). Treatment of olive mill wastewater by supercritical water oxidation. The Journal of Supercritical Fluids, 46(2), 142–148. https://doi.org/10.1016/j.supflu.2008.04.006
Fang, Z., Minowa, T., Smith, R. L., Ogi, T., & Koziński, J. A. (2004). Liquefaction and Gasification of Cellulose with Na 2 CO 3 and Ni in Subcritical Water at 350 ° C. Industrial & Engineering Chemistry Research, 43(10), 2454–2463. https://doi.org/10.1021/ie034146t
Fang, Z., Smith Jr, R. L., Inomata, H., & Arai, K. (2000). Phase behavior and reaction of polyethylene in supercritical water at pressures up to 2.6 GPa and temperatures up to 670°C. The Journal of Supercritical Fluids, 16(3), 207–216. https://doi.org/10.1016/s0896-8446(99)00035-2
Ferreira-Pinto, L., de Araujo, P. C. C., Aranda Saldaña, M. D., Arce, P. F., & Cardozo-Filho, L. (2019). Experimental Data and Thermodynamics Modeling (PC-SAFT EoS) of the {CO 2 + Acetone + Pluronic F-127} System at High Pressures. Journal of Chemical & Engineering Data, 64(5), 2186–2192. https://doi.org/10.1021/acs.jced.8b01163
Ferreira-Pinto, L., Feirhrmann, A. C., Corazza, M. L., Fernandes-Machado, N. R. C., dos Reis Coimbra, J. S., Saldaña, M. D. A., & Cardozo-Filho, L. (2015). Hydrogen production and TOC reduction from gasification of lactose by supercritical water. International Journal of Hydrogen Energy, 40(36), 12162–12168. https://doi.org/10.1016/j.ijhydene.2015.07.092
Ferreira-Pinto, L., Tavares, C. R. G., de Souza, T. L., Feihrmann, A. C., Coimbra, J., Vedoy, D. R. L., & Cardozo-Filho, L. (2017). Supercritical water oxidation of lactose. The Canadian Journal of Chemical Engineering, 95(5), 827–831. https://doi.org/10.1002/cjce.22772
Fujii, T., Hayashi, R., Kawasaki, S., Suzuki, A., & Oshima, Y. (2011). Water density effects on methanol oxidation in supercritical water at high pressure up to 100MPa. The Journal of Supercritical Fluids, 58(1), 142–149. https://doi.org/10.1016/j.supflu.2011.04.004
García-Jarana, M. B., Sánchez-Oneto, J., Portela, J. R., Nebot Sanz, E., & Martínez de la Ossa, E. J. (2008). Supercritical water gasification of industrial organic wastes. The Journal of Supercritical Fluids, 46(3), 329–334. https://doi.org/10.1016/j.supflu.2008.03.002
García Jarana, M. B., Sánchez-Oneto, J., Portela, J. R., Nebot Sanz, E., & Martínez de la Ossa, E. J. (2008). Supercritical water gasification of industrial organic wastes. The Journal of Supercritical Fluids, 46(3), 329–334. https://doi.org/10.1016/j.supflu.2008.03.002
Gosselink, R. J. A., Teunissen, W., van Dam, J. E. G., de Jong, E., Gellerstedt, G., Scott, E. L., & Sanders, J. P. M. (2012). Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology, 106, 173–177. https://doi.org/10.1016/j.biortech.2011.11.121
Guo, Y., Wang, S., Wang, Y., Zhang, J., Xu, D., & Gong, Y. (2012). Gasification of two and three-components mixture in supercritical water: Influence of NaOH and initial reactants of acetic acid and phenol. International Journal of Hydrogen Energy, 37(3), 2278–2286. https://doi.org/10.1016/j.ijhydene.2011.10.074
Heikkinen, J. ., Hordijk, J. ., de Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883–900. https://doi.org/10.1016/j.jaap.2003.12.001
Holgate, H. R., Meyer, J. C., & Tester, J. W. (1995). Glucose hydrolysis and oxidation in supercritical water. AIChE Journal, 41(3), 637–648. https://doi.org/10.1002/aic.690410320
Huang, S. H., & Radosz, M. (1990). Equation of state for small, large, polydisperse, and associating molecules. Industrial & Engineering Chemistry Research, 29(11), 2284–2294. https://doi.org/10.1021/ie00107a014
Japas, M. L., & Franck, E. U. (1985). High Pressure Phase Equilibria and PVT-Data. of the Water-Nitrogen System to 673 K and 250 MPa. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 89(7), 793–800. https://doi.org/10.1002/bbpc.19850890714
Kabyemela, B. M., Adschiri, T., Malaluan, R. M., & Arai, K. (1997). Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water. Industrial & Engineering Chemistry Research, 36(5), 1552–1558. https://doi.org/10.1021/ie960250h
Kritzer, P. (2004). Corrosion in high-temperature and supercritical water and aqueous solutions: a review. The Journal of Supercritical Fluids, 29(1–2), 1–29. https://doi.org/10.1016/S0896-8446(03)00031-7
Kruse, A, & Gawlik, A. (2003). Biomass Conversion in Water at 330−410 °C and 30−50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways. Industrial & Engineering Chemistry Research, 42(2), 267–279. https://doi.org/10.1021/ie0202773
Kruse, Andrea. (2010). Erratum: Supercritical water gasification. Andrea Kruse. Biofuels, Bioproducts and Biorefining , 2009; 2:415-437. Biofuels, Bioproducts and Biorefining, 4(2), 241–241. https://doi.org/10.1002/bbb.195
Lee, I.-G., & Ihm, S.-K. (2009). Catalytic Gasification of Glucose over Ni/Activated Charcoal in Supercritical Water. Industrial & Engineering Chemistry Research, 48(3), 1435–1442. https://doi.org/10.1021/ie8012456
Lee, I.-G., Kim, M.-S., & Ihm, S.-K. (2002). Gasification of Glucose in Supercritical Water. Industrial & Engineering Chemistry Research, 41(5), 1182–1188. https://doi.org/10.1021/ie010066i
Marrone, P. A., & Hong, G. T. (2009). Corrosion control methods in supercritical water oxidation and gasification processes. The Journal of Supercritical Fluids, 51(2), 83–103. https://doi.org/10.1016/j.supflu.2009.08.001
Matsumura, Y, Minowa, T., Potic, B., Kersten, S., Prins, W., Vanswaaij, W., … Kruse, A. (2005). Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 29(4), 269–292. https://doi.org/10.1016/j.biombioe.2005.04.006
Matsumura, Y, Sasaki, M., Okuda, K., Takami, S., Ohara, S., Umetsu, M., & Adschiri, T. (2006). SUPERCRITICAL WATER TREATMENT OF BIOMASS FOR ENERGY AND MATERIAL RECOVERY. Combustion Science and Technology, 178(1–3), 509–536. https://doi.org/10.1080/00102200500290815
Matsumura, Yukihiko. (2002). Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Conversion and Management, 43(9–12), 1301–1310. https://doi.org/10.1016/S0196-8904(02)00016-X
McHugh, M., & Krukonis, V. (2013). Supercritical Fluid Extraction:Principles and Practice. Retrieved from https://www.elsevier.com/books/supercritical-fluid-extraction/brenner/978-0-08-051817-6
Minowa, T., & Fang, Z. (1998). Hydrogen Production from Cellulose in Hot Compressed Water Using Reduced Nickel Catalst: Product Distribution at Different Reaction Temperatures. Journal of Chemical Engineering of Japan, 31(3), 488–491. Retrieved from http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0032094467&partnerID=40&rel=R7.0.0
Nikolai, P., Rabiyat, B., Aslan, A., & Ilmutdin, A. (2019). Supercritical CO2: Properties and Technological Applications - A Review. Journal of Thermal Science, 28(3), 394–430. https://doi.org/10.1007/s11630-019-1118-4
Osada, M., Sato, O., Watanabe, M., Arai, K., & Shirai, M. (2006). Water Density Effect on Lignin Gasification over Supported Noble Metal Catalysts in Supercritical Water. Energy & Fuels, 20(3), 930–935. https://doi.org/10.1021/ef050398q
Osada, M., Sato, T., Watanabe, M., Adschiri, T., & Arai, K. (2004). Low-Temperature Catalytic Gasification of Lignin and Cellulose with a Ruthenium Catalyst in Supercritical Water. Energy & Fuels, 18(2), 327–333. https://doi.org/10.1021/ef034026y
Peterson, A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. https://doi.org/10.1039/b810100k
Rabenau, V. A. (1985). Die Rolle der Hydrothermalsynthese in der praparativen Chemie. System, 9(1983), 1017–1032. https://doi.org/10.1002/ange.19850971205
Reed, T. B. (1985). Principles and Technology of Biomass Gasification. In Advances in Solar Energy (pp. 125–174). https://doi.org/10.1007/978-1-4613-9951-3_3
Resende, F. L. P., & Savage, P. E. (2009). Expanded and Updated Results for Supercritical Water Gasification of Cellulose and Lignin in Metal-Free Reactors. Energy & Fuels, 23(12), 6213–6221. https://doi.org/10.1021/ef9007278
Resende, F. L. P., & Savage, P. E. (2010). Kinetic model for noncatalytic supercritical water gasification of cellulose and lignin. AIChE Journal, 56(9), 2412–2420. https://doi.org/10.1002/aic.12165
Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., & Arai, K. (1998). Cellulose hydrolysis in subcritical and supercritical water. The Journal of Supercritical Fluids, 13(1–3), 261–268. https://doi.org/10.1016/S0896-8446(98)00060-6
Sato, T., Osada, M., Watanabe, M., Shirai, M., & Arai, K. (2003). Gasification of alkylphenols with supported noble metal catalysts in supercritical water. Industrial Engineering Chemistry Research, 42(19), 4277–4282. https://doi.org/10.1021/ie030261s
Savage, P. E. (1999). Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 99(2), 603–622. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11848994
Scandelai, A. P. J., Cardozo Filho, L., Martins, D. C. C., Freitas, T. K. F. de S., Garcia, J. C., & Tavares, C. R. G. (2018). Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation. Waste Management, 77, 466–476. https://doi.org/10.1016/j.wasman.2018.04.031
Scandelai, A. P. J., Zotesso, J. P., Jegatheesan, V., Cardozo-Filho, L., & Tavares, C. R. G. (2020). Intensification of supercritical water oxidation (ScWO) process for landfill leachate treatment through ion exchange with zeolite. Waste Management, 101, 259–267. https://doi.org/10.1016/j.wasman.2019.10.005
Schmieder, H., Abeln, J., Boukis, N., Dinjus, E., Kruse, A., Kluth, M., … Schacht, M. (2000). Hydrothermal gasification of biomass and organic wastes. The Journal of Supercritical Fluids, 17(2), 145–153. https://doi.org/10.1016/S0896-8446(99)00051-0
Schwald, W., & Bobleter, O. (1989). Hydrothermolysis of Cellulose Under Static and Dynamic Conditions at High Temperatures. Journal of Carbohydrate Chemistry, 8(4), 565–578. https://doi.org/10.1080/07328308908048017
Seward, T. M., & Franck, E. U. (1981). The system hydrogen - water up to 440°C and 2500 bar pressure. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 85(1), 2–7. https://doi.org/10.1002/bbpc.19810850103
Shin, Y. H., Lee, H., Lee, Y.-H., Kim, J., Kim, J.-D., & Lee, Y.-W. (2009). Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation. Journal of Hazardous Materials, 167(1–3), 824–829. https://doi.org/10.1016/j.jhazmat.2009.01.062
Steeper, R. R., Rice, S. F., Kennedy, I. M., & Aiken, J. D. (1996). Kinetics Measurements of Methane Oxidation in Supercritical Water. The Journal of Physical Chemistry, 100(1), 184–189. https://doi.org/10.1021/jp951925h
Taylor, J. (2003). Hydrogen production in a compact supercritical water reformer. International Journal of Hydrogen Energy, 28(11), 1171–1178. https://doi.org/10.1016/S0360-3199(02)00291-4
Trombeta, N. de C., & Caixeta Filho, J. V. (2017). Potencial e Disponibilidade de Biomassa de Cana-de-açúcar na Região Centro-Sul do Brasil: indicadores agroindustriais. Revista de Economia e Sociologia Rural, 55(3), 479–496. https://doi.org/10.1590/1234-56781806-94790550304
van Bennekom, J. G., Venderbosch, R. H., Assink, D., & Heeres, H. J. (2011). Reforming of methanol and glycerol in supercritical water. The Journal of Supercritical Fluids, 58(1), 99–113. https://doi.org/10.1016/j.supflu.2011.05.005
Vera Pérez, I., Rogak, S., & Branion, R. (2004). Supercritical water oxidation of phenol and 2,4-dinitrophenol. The Journal of Supercritical Fluids, 30(1), 71–87. https://doi.org/10.1016/S0896-8446(03)00166-9
Veriansyah, B., Kim, J.-D., & Lee, J.-C. (2007). Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor. Journal of Hazardous Materials, 147(1–2), 8–14. https://doi.org/10.1016/j.jhazmat.2006.12.040
Waldner, M. H., & Vogel, F. (2005). Renewable Production of Methane from Woody Biomass by Catalytic Hydrothermal Gasification. Industrial & Engineering Chemistry Research, 44(13), 4543–4551. https://doi.org/10.1021/ie050161h
Watanabe, M., Inomata, H., & Arai, K. (2002). Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass and Bioenergy, 22(5), 405–410. https://doi.org/10.1016/S0961-9534(02)00017-X
Watanabe, M., Inomata, H., Osada, M., Sato, T., & Adschiri, T. (2003). Catalytic effects of NaOH and ZrO 2 for partial oxidative gasification of n-hexadecane and lignin in supercritical waterq. 82, 545–552.
Xu, X., Matsumura, Y., Stenberg, J., & Antal, M. J. (1996). Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water †. Industrial & Engineering Chemistry Research, 35(8), 2522–2530. https://doi.org/10.1021/ie950672b
Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651–671. https://doi.org/10.1016/S0196-8904(03)00177-8
Yan, B., Wei, C., Hu, C., Xie, C., & Wu, J. (2007). Hydrogen generation from polyvinyl alcohol-contaminated wastewater by a process of supercritical water gasification. Journal of Environmental Sciences (China), 19(12), 1424–1429. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18277644
Yoshida, Y. (2003). Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies—position of supercritical water gasification in biomass technologies. Biomass and Bioenergy, 25(3), 257–272. https://doi.org/10.1016/S0961-9534(03)00016-3
Youssef, E. a., Elbeshbishy, E., Hafez, H., Nakhla, G., & Charpentier, P. (2010). Sequential supercritical water gasification and partial oxidation of hog manure. International Journal of Hydrogen Energy, 35(21), 11756–11767. https://doi.org/10.1016/j.ijhydene.2010.08.097
Yu, D., Aihara, M., & Antal, M. J. (1993). Hydrogen Production by Steam Reforming Glucose in Supercritical Water? (August 1982), 574–577.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Thiago Vinícius Barros; Guilherme de Souza Lopez; Renivaldo José dos Santos; Marcela Prado Silva Parizi; Lucio Cardozo-Filho; Leandro Ferreira-Pinto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.