Poderiam as árvores mudar o comportamento futuro na xilogénese para melhorar a condição física com base nas condições passadas e actuais? Um caso de estudo tropical

Autores

DOI:

https://doi.org/10.33448/rsd-v11i9.31442

Palavras-chave:

Atribuição de carbono; Lignina; Chuva; Massa Específica; Características da madeira.

Resumo

A alocação de carbono é o calcanhar de Aquiles dos modelos florestais, devido à dificuldade em prever as respostas induzidas pelas mudanças ambientais. Os modelos estruturais-funcionais envolvem a estratégia da planta para dividir os seus recursos entre órgãos e funções. Uma característica funcional importante é a arquitetura do xilema, que está ligada à estratégia de uso da água e produtividade da planta, além de um dos mais importantes C-sink (que absorbe carbono). O nosso objetivo é utilizar a informação presente nos anéis de árvores de Schizolobium parahyba, para expandir as possibilidades de abordagens teleonómicas em modelos estruturais-funcionais de espécies arbóreas. Numa análise comparativa de anéis do xilema, estabelecemos relações entre densidade aparente, características dos vasos como potencial de condutividade hidráulica, espessura de parede dupla, e intensidade de autofluorescência da lignina. As análises mostraram que as características dos anéis de crescimento parecem ter sido moduladas não só pela disponibilidade de água do período de formação da madeira, mas também pela disponibilidade de água dos anos anteriores. Esta relação ocorreu devido à maior capacidade de acumulação de carboidratos de reserva em anos cujas condições climáticas eram favoráveis. Este padrão de comportamento implica a formação de dois padrões de anéis de crescimento distintos, um com elevado e o outro com baixo custo estrutural. Este estudo de caso mostra que a espécie pode alterar o comportamento futuro em xilogénese para melhorar a aptidão física com base nas condições passadas e atuais. O nosso estudo pode ajudar a ampliar as possibilidades de abordagens teleonómicas em modelos estruturais-funcionais de espécies de árvores, o que ajudará a uma maior compreensão de como as árvores equilibram a sua alocação de carbono na madeira de acordo com as mudanças no ambiente.

Referências

Aloni, R. (2013). The role of hormones in controlling vascular differentiation. In: Fromm J, ed. Cellular Aspects of Wood Formation, Heidelberg, Germany: Springer-Verlag, 99-140. https://doi.org/10.1007/s00425-013-1927-8

Amthor, J.S. (2003). Efficiency of lignin biosynthesis: a quantitative analysis. Annals of Botany, 91(6), 673-695. https://doi.org/10.1093/aob/mcg073

Bréda, N., R, Huc., A, Granier., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63(6), 625-644. https://doi.org/10.1051/forest:2006042

Chaffey, N. (2002). Wood formation in trees: Cell and Molecular Biology Techniques. Taylor & Francis Inc. https://10.1093/aob/mcf216

Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6, 850-861. https://doi.org/10.1038/nrm1746

Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., & Vargas, R. (2014). Nonstructural Carbon in Wood Plants. Annual Review of Plant Biology, 65, 667-687. https://doi.org.10.1146/annurev-arplant-050213-040054

Donaldson, L. (2013). Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA Journal, 34(1), 3-19. https://doi.org.10.1163/22941932-00000002

Epron, D., Nouvellon, Y., & Ryan, M. G. (2012). Introduction to the invited issue on carbon allocation of trees and forests. Tree Physiology, 32(6), 639-643. https://doi.org/10.1093/treephys/tps055

Fatichi, S., Leuzinger, S., & Körner, C. (2014). Moving beyond photosynthesis: from carbon source to sink-driven vegetation modelling. New Phytologist, 201(4), 1086-1095. https://doi.org/10.1111/nph.12614

Fonti, P., & Jansen, S. (2012). Xylem plasticity in response to climate. New Phytologist, 195(4), 734-736. https://doi.org/10.1111/j.1469-8137.2012.04252.x

Fournier, M., Dlouhá, J., Jaouen, G., & Almeras, T. (2013). Integrative biomechanics for tree ecology: beyond wood density and strength. Journal of Experimental Botany, 64 (15), 4793-4815. https://doi.org/10.1093/jxb/ert279

Franklin, O., Johansson, J., Dewar, R. C., Dieckmann, U., McMurtrie, R. E., Brännström, A., & Dybzinski, R. (2012). Modelling carbon allocation in trees: a search for principles. Tree Physiology, 32(6):648-666. https://doi.org/10.1093/treephys/tpr138

Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78.

Hu, W., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C., & Chiang, V. L. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology, 17, 808-812. https://doi.org/10.1038/11758

Johnssona, C., Xu, J., Xuea, W., Dubreuila, C., Lezhnevaa, L., & Fischera, U. (2019). The plant hormone auxin directs the timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiologia Plantarum, 165(4), 673–689. https://doi.org/10.1111/ppl.12766

Joshi, C. P., & Mandsfield, S. D. (2007). The cellulose paradox: simple, molecule, complex biosynthesis. Current Opinion in Plant Biology, 10(3), 220-226. https://doi.org/10.1016/j.pbi.2007.04.013

Kalve, S., De Vos, D., & Beemster, G. T. S. (2014). Leaf development: a cellular perspective. Frontiers in Plant Science, 5:(362), 1-25. https://doi.org/10.3389/fpls.2014.00362

Kramer, P. J. (1964). The role of water and wood formation. In: Zimmermann MH, ed. The Formation of Wood in Forest Trees. Academic Press Inc., 519-532.

Lacointe, A. (2000). Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models. Annals of Forest Science, 57(5-6), 521-533. https://doi.org/10.1051/forest:2000139

Larjavaara, M., & Muller-Landau, H. (2010). Rethinking the value of high wood density. Functional Ecology, 24(4): 701-705. https://doi.org/10.1111/j.1365-2435.2010.01698.x

Le Clere, S., Schmelz, E. A., & Chourey, P. S. (2010). Sugar Levels Regulate Tryptophan-Dependent Auxin Biosynthesis in Developing Maize Kernels. Plant Physiology, 153(1), 306-318. https://doi.org/10.1104/pp.110.155226

Le Roux, X., Lacointe, A., Escobar-Gutiérrez, A., & Le Dizès, S. (2001). Carbon-based models of individual tree growth: A critical appraisal. Annals of Forest Science, 58 (5), 469-506. https://doi.org/10.1051/forest:2001140

Letort, V., Cournède, P., Mathieu, A., Reffye, P., Constant, T. (2008). Parametric Identification of a Functional-Structural Tree Growth Model and Application to Beech Trees (Fagus Sylvatica). Functional Plant Biology, 35, 951-963. https://doi.org/arXiv:1010.5145

Levitt, J. (1980). Responses of Plants to Environmental Stresses: Water, Radiation, Salt, and Other Stresses. Michigan: Academic Press. 607 p.

Macadam, J. W., & Nelson, C. J. (2002). Secondary cell wall deposition causes radial growth of fibre cells in the maturation zone of elongating tall fescue leaf blades. Annals of Botany, 89(1), 89-96. https://doi.org/10.1093/aob/mcf010

Mähönen, A. P., Tusscher, K., Siligato, R., Smetana, O., Diaz-Triviño, S., Salojärvi, J., Waschsman, G., Prasad, K., Heidstra, R., & Scheres, B. (2014). PLETHORA gradient formation mechanism separates auxin responses. Nature, 515(6), 125-129. https://doi.org/10.1038/nature13663

Mäkelä, A. (2012). On guiding principles for carbon allocation in eco-physiological growth models. Tree Physiology, 32(6), 644-647. https://doi.org/10.1093/treephys/tps033

Marcati, C. R., Milanez, C. R. D., & Machado, S. R. (2008). Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees, 22, 3–12. https://doi.org/10.1007/s00468-007-0173-8

Marcelis, L. F. M., & Heuvelink, E. (2007). Concepts of modelling carbon allocation among plant organs. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB, eds. Functional-Structural Plant Modelling in Crop Production, Netherlands: Springer, pp. 103-111.

Matsumoto-Kitano, M., Kusumoto, T., Tarkowshi, P., Kinoshita-Tsujimura, K., & Václaviková, K. (2008). Cytokinins are central regulators of cambial activity. PNAS, 105(50), 20027-20031. https://doi.org/10.1073/pnas.0805619105

McCann, M. C., Roberts, K., Carpita, N. C. (2001). Plant Cell Growth and Elongation. eLS. https://doi.org/10.1038/npg.els.0001688

McQueen-Mason, S., Durachko, D. M., & Cosgrove, D. J. (1992). Two endogenous proteins that induce cell wall extension in plants. The Plant Cell, 4(11), 1425-1433. https://doi.org/10.1105/tpc.4.11.1425

Millard, P., Sommerkorn, M., & Grelet, G. (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175(1), 11-28. https://doi.org/10.1111/j.1469-8137.2007.02079.x

Nieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., Tähtiharju, S., Elo, A., Decourteix, M., Ljung, K., Bhalerao, R., Keinonen, K., Albert, V. A., & Helariutta, Y. (2008). Cytokinin signsling regulates cambial development in poplar. PNAS, 105(50), 20032-20037. https://doi.org/10.1073/pnas.0805617106

Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., & Sederoff, R. (2010). Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiology, 154(2), 555-561. https://doi.org/10.1104/pp.110.161281

Ogle, K., & Pacala, S. W. (2009). A modelling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiology, 29(4), 587-605. https://doi.org/10.1093/treephys/tpn051

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., & Wagner, H. (2015). Vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan

Ortega, J. K. E. (2010). Plant Cell Growth in Tissue. Plant Physiology, 154(3), 1244-1253. https://doi.org/10.1104/pp.110.162644

Palacio, S., Paterson, E., Sim, A., Hester, A. J., & Millard, P. (2011). Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy. Tree Physiology, 31(2), 150-159. https://doi.org/10.1093/treephys/tpq110

Pantin, F., Simonneau, T., & Muller, B. (2012). Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196 (2), 349-366. https://doi.org/10.1111/j.1469-8137.2012.04273.x

Rao, K. S., & Rajput, K. S. (2001). Relationship between seasonal cambial activity, development of xylem and phenology in Azadirachta indica growing in different forests of Gujarat State. Annals Forest Science, 58(6), 691-698. https://doi.org/10.1051/forest:2001156

R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Rossi, M., Faria, A. J., Wenzel, R., Câmara, C. D., Arcova, F. C. S., Cicco, V., Ranzini, M., Luiz, R. A. F., Santos, J. B. A., Souza, LFS, & Veneziani, Y. (2009). Avaliação do meio físico. In: Leonel C, ed. Plano de Manejo do Parque Estadual Alberto Löfgren. São Paulo: Instituto Florestal, p. 11-16.

Sairanen, I., Novák, O., Pencík, A., Ikeda, Y., Jones, B., Sandberg, G., & Ljung, K. (2012). Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in Arabidopsis. The Plant Cell, 24(12), 4907-4916. https://doi.org/10.1105/tpc.112.104794

Schuetz, M., Smith, R., & Ellis, B. (2012). Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany, 64(1), 11-31. https://doi.org/10.1093/jxb/ers287

Simard, S., Giovannelli, A., Treydte, K., Traversi, M. L., King, G. M., Frank, D., & Fonti, P. (2013). Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 33 (9), 913-923. https://doi.org/10.1093/treephys/tpt075

Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(34), 345-360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

Vanneste, S., & Friml J. (2013). Calcium: the missing link in auxin action. Plants, 2 (24), 650-675. https://doi.org/ 10.3390/plants2040650

Van Wijk, M. T., Willians, M., Gough, L., Hobbie, S. E., & Shaver, G. R. (2003). Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? Journal of Ecology, 91(4), 664-676. https://doi.org/10.1046/j.1365-2745.2003.00788.x

Von Arx, G., Archer, S. R., & Hughes, M. K. (2012). Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany, 109(6), 1091-1100. https://doi.org/10.1093/aob/mcs030

Wang, L., & Yong-Ling R. (2013). Regulation of cell division and expansion by sugar and auxin signalling. Frontiers in Plant Science, 4(163), https://doi.org/10.3389/fpls.2013.00163.

Wile, E., & Helliker, B. (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New phytologist, 195(2), 285-289.https://doi.org/ 10.1111/j.1469-8137.2012.04180.x

Zang, C., & Biondi, F. (2013). Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia, 31(1), 68-74. https://doi.org/10.1016/j.dendro.2012.08.001

Zweifel, R., Zimmermann, L., Zeugin, F., & Newbery, D. M. (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57(6), 1445-1459. https://doi.org/10.1093/jxb/erj125

Downloads

Publicado

02/07/2022

Como Citar

SANTOS, C. M. .; ROMEIRO, D. .; AMORIM, E. P. .; BUCCI, L. A. .; RAJPUT, K. S. .; LONGUI, E. L. Poderiam as árvores mudar o comportamento futuro na xilogénese para melhorar a condição física com base nas condições passadas e actuais? Um caso de estudo tropical. Research, Society and Development, [S. l.], v. 11, n. 9, p. e4011931442, 2022. DOI: 10.33448/rsd-v11i9.31442. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31442. Acesso em: 26 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas