Veículos elétricos: Um estudo descritivo de seus impactos ambientais
DOI:
https://doi.org/10.33448/rsd-v11i11.32235Palavras-chave:
Veículos elétricos; Gases de efeito estufa; Emissões de CO2; Energia renovável; Combustível fóssil; Impacto ambiental.Resumo
Inventado no Século XIX, os carros elétricos não foram competitivos o suficiente para disputarem mercado com os carros a combustão durante o Século XX. Com o crescimento do pensamento sustentável e do debate sobre poluição, meio ambiente e mudança climática, a queima de combustíveis fósseis e a poluição gerada pelo processo se tornaram pontos críticos no debate ecológico. Devido à urgência da mudança climática, maiores investimentos foram realizados em tecnologias que minimizem o problema e empresas com propostas mais ecológicas surgiram no mercado. Este trabalho teve como objetivo concatenar e comparar as principais conclusões disponíveis na literatura contemporânea a respeito do uso de carros elétricos a bateria, a fim de descrever seus impactos ambientais, principalmente quando comparados aos carros convencionais. Concluiu-se que a mudança para carros elétricos é ambientalmente positiva quando conciliada à mudança de matriz energética para fontes renováveis, chegando a uma redução de 34% nas emissões de gases de efeito estufa, em determinados estudos. Porém, ressalta-se que houve grande variabilidade de resultados quanto às reduções de emissões desses gases, com estudos similares alcançando resultados que diferiam 4,5 vezes entre si, devido às premissas utilizadas. Encontraram-se também alternativas para potencializar esta migração de tecnologia de transporte, como políticas de taxação de carbono. Pontuaram-se aspectos negativos dos carros elétricos, como acidificação oceânica e do solo e alta toxicidade humana comparada aos carros a combustão.
Referências
Ali, S., Akter, S., & Fogarassy, C. (2021). The Role of the Key Components of Renewable Energy (Combustible Renewables and Waste) in the Context of CO2 Emissions and Economic Growth of Selected Countries in Europe. Energies, 14(8), 2034. https://doi.org/10.3390/en14082034
Arvanitoyannis, I. S. (2008). Waste Management for the Food Industries. Elsevier. http://dx.doi.org/10.1016/b978-0-12-373654-3.x5001-9
Carson, R. (2002). Silent spring (40th anniversary ed., 1st Mariner Books ed.). Houghton Mifflin.
Costa, J. E. G. (2019). Mass introduction of electric passenger vehicles in Brazil: Impact assessment on energy use, climate mitigation and on charging infrastructure needs for several case studies [Ph.D. Thesis, Universidade Nova Lisboa]. http://hdl.handle.net/10362/83963
Costa, E., Seixas, J., Costa, G., & Turrentine, T. (2017). Interplay between ethanol and electric vehicles as low carbon mobility options for passengers in the municipality of São Paulo. International Journal of Sustainable Transportation, 11(7), 518–525. https://doi.org/10.1080/15568318.2016.1276651
Costa, E., Seixas, J., Baptista, P., Costa, G., & Turrentine, T. (2018). CO2 emissions and mitigation policies for urban road transportation: São Paulo versus Shanghai. Urbe. Revista Brasileira de Gestão Urbana, 10(suppl. 1), 143–158. https://doi.org/10.1590/2175-3369.010.supl1.ao15
Costa, E., Seixas, J., Costa, G., & Turrentine, T. (2017). Interplay between ethanol and electric vehicles as low carbon mobility options for passengers in the municipality of São Paulo. International Journal of Sustainable Transportation, 11(7), 518–525. https://doi.org/10.1080/15568318.2016.1276651
Crabtree, G. (2019). The coming electric vehicle transformation. Science, 366(6464), 422–424. https://doi.org/10.1126/science.aax0704
Dias, M. V. X., Haddad, J., Horta Nogueira, L., Costa Bortoni, E. da, Passos da Cruz, R. A., Akira Yamachita, R., & Goncalves, J. L. (2014). The impact on electricity demand and emissions due to the introduction of electric cars in the São Paulo Power System. Energy Policy, 65, 298–304. https://doi.org/10.1016/j.enpol.2013.09.052
Ding, Y., Cano, Z. P., Yu, A., Lu, J., & Chen, Z. (2019). Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2(1), 1–28. https://doi.org/10.1007/s41918-018-0022-z
Ellingsen, L. A.-W., Majeau-Bettez, G., Singh, B., Srivastava, A. K., Valøen, L. O., & Strømman, A. H. (2014). Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack: LCA of a Li-Ion Battery Vehicle Pack. Journal of Industrial Ecology, 18(1), 113–124. https://doi.org/10.1111/jiec.12072
Empresa de Pesquisa Energética - EPE. (2021). Balanço Energético Nacional 2021. Relatório Síntese. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-588/BEN_S%C3%ADntese_2021_PT.pdf
Falcão, E. A. M., Teixeira, A. C. R., & Sodré, J. R. (2017). Analysis of CO2 emissions and techno-economic feasibility of an electric commercial vehicle. Applied Energy, 193, 297–307. https://doi.org/10.1016/j.apenergy.2017.02.050
Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H.-J. (2006). The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. The International Journal of Life Cycle Assessment, 11(2), 80–85. https://doi.org/10.1065/lca2006.02.002
Fuc, P., Kurczewski, P., Lewandowska, A., Nowak, E., Selech, J., & Ziolkowski, A. (2016). An environmental life cycle assessment of forklift operation: A well-to-wheel analysis. The International Journal of Life Cycle Assessment, 21(10), 1438–1451. https://doi.org/10.1007/s11367-016-1104-y
Gil, A. C. (2009). Como elaborar projetos de pesquisa. Atlas.
Hawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
Hoekstra, A., & Steinbuch, M. (2020). Comparing the lifetime green house gas emissions of electric cars with the emissions of cars using gasoline or diesel (p. 30). Eindhoven University of Technology. https://www.avere.org/wp-content/uploads/2020/09/englisch_Studie-EAuto-versus-Verbrenner_CO2.pdf
Høyer, K. G. (2008). The history of alternative fuels in transportation: The case of electric and hybrid cars. Utilities Policy, 16(2), 63–71. https://doi.org/10.1016/j.jup.2007.11.001
International Energy Agency - IEA. (2020). Global EV Outlook 2020: Entering the decade of electric drive? [Technology report]. International Energy Agency. https://www.iea.org/reports/global-ev-outlook-2020
Ji, S., Cherry, C. R., J. Bechle, M., Wu, Y., & Marshall, J. D. (2012). Electric Vehicles in China: Emissions and Health Impacts. Environmental Science & Technology, 46(4), 2018–2024. https://doi.org/10.1021/es202347q
Kubański, M. (2020). Prospects for the Use of Electric Vehicles in Public Transport on the Example of the City of Czechowice-Dziedzice. Transportation Research Procedia, 44, 110–114. https://doi.org/10.1016/j.trpro.2020.02.016
Larminie, J., & Lowry, J. (2012). Electric vehicle technology explained (Second edition). Wiley, John Wiley & Sons, Ltd., Publication.
Lombardi, L., Tribioli, L., Cozzolino, R., & Bella, G. (2017). Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. The International Journal of Life Cycle Assessment, 22(12), 1989–2006. https://doi.org/10.1007/s11367-017-1294-y
Lotfalipour, M. R., Falahi, M. A., & Ashena, M. (2010). Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy, 35(12), 5115–5120. https://doi.org/10.1016/j.energy.2010.08.004
Lvovsky, K., Hughes, G., Maddison, D., Ostro, B., & Pearce, D. (2000). Environmental costs of fossil fuels—A rapid assessment method with application to six cities (Technical Paper No. 78; Environment Department Papers, p. 39). World Bank. http://hdl.handle.net/10986/18303
Ma, H., Balthasar, F., Tait, N., Riera-Palou, X., & Harrison, A. (2012). A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy, 44, 160–173. https://doi.org/10.1016/j.enpol.2012.01.034
Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies, 12(6), 964. https://doi.org/10.3390/en12060964
Masson-Delmotte, V. P., Zhai, A., Pirani, S. L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M. I., Gomis, M., Huang, K., Leitzell, L., Lonnoy, J. B. L., Matthews, T. K., Maycock, T., Waterfield, O., Yelekçi, R. Y., & Zhou, B. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report_smaller.pdf
Prashad, V., & Bejarano, A. (2019, March). Elon Musk: Um neoconquistador do lítio sul-americano. Revista Opera. https://revistaopera.com.br/2020/03/19/elon-musk-um-neoconquistador-do-litio-sul-americano/
Mierlo, J. van, Messagie, M., & Rangaraju, S. (2017). Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment. Transportation Research Procedia, 25, 3435–3445. https://doi.org/10.1016/j.trpro.2017.05.244
Milev, G., Hastings, A., & Al-Habaibeh, A. (2021). The environmental and financial implications of expanding the use of electric cars—A Case study of Scotland. Energy and Built Environment, 2(2), 204–213. https://doi.org/10.1016/j.enbenv.2020.07.005
Ou, X., Xiaoyu, Y., & Zhang, X. (2011). Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Applied Energy, 88(1), 289–297. https://doi.org/10.1016/j.apenergy.2010.05.010
Pero, F. D., Delogu, M., & Pierini, M. (2018). Life Cycle Assessment in the automotive sector: A comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structural Integrity, 12, 521–537. https://doi.org/10.1016/j.prostr.2018.11.066
Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222–233. https://doi.org/10.1016/j.energy.2019.04.080
Qiao, Q., Zhao, F., Liu, Z., Hao, H., He, X., Przesmitzki, S. V., & Amer, A. A. (2020). Life cycle cost and GHG emission benefits of electric vehicles in China. Transportation Research Part D: Transport and Environment, 86, 102418. https://doi.org/10.1016/j.trd.2020.102418
Romare, M., & Dahllöf, L. (2017). The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries: A study with focus on Current Technology and batteries for light-duty vehicles (Technical Report C 243; p. 49). IVL Swedish Environmental Research Institute. ISBN 978-91-88319-60-9
Rothaermel, F. T. (2021). Strategic management (Fifth edition). McGraw-Hill Education. ISBN 126026128X
Scrosati, B. (2011). History of lithium batteries. Journal of Solid State Electrochemistry, 15(7–8), 1623–1630. https://doi.org/10.1007/s10008-011-1386-8
Sun, X., Li, Z., Wang, X., & Li, C. (2019). Technology Development of Electric Vehicles: A Review. Energies, 13(1), 90. https://doi.org/10.3390/en13010090
Tsilev, K. (2019). Well-to-Wheel – How to better understand it. Gmobility. https://gmobility.eu/what-is-well-to-wheel
Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M., & Hossain, E. (2017). A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies, 10(8), 1217. https://doi.org/10.3390/en10081217
United Nations Framework Convention on Climate Change. (2011). Climate change science—The status of climate change science today (7p.). United Nations Climate Change. https://unfccc.int/files/press/backgrounders/application/pdf/press_factsh_science.pdf
United Nations Framework Convention on Climate Change. (2021). United Nations Climate Change Annual Report 2020 (74p.) [Annual Report]. United Nations Framework. https://unfccc.int/annualreport
Varta Automotive. (2021). Como funciona uma bateria? https://www.varta-automotive.pt/pt-pt/apoio-da-varta-sobre-baterias/definicoes-das-baterias/como-funciona-uma-bateria
Westbrook, M. (2001). The Electric Car: Development and future of battery, hybrid and fuel-cell cars (Energy Engineering) (Institution of Electrical Engineers, Ed.). Institution of Electrical Engineers. ISBN 978-0-85296-013-4
Woo, J., Choi, H., & Ahn, J. (2017). Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment, 51, 340–350. https://doi.org/10.1016/j.trd.2017.01.005
World Commission on Environment and Development (Ed.). (1987). Our common future (383p.). Oxford University Press. ISBN 978-0-19-282080-8.
World Economic Forum, W. (2020). Consequences of a Mobile Future: Creating an Environmentally Conscious Life Cycle for Lead-Acid Batteries (29p.). Geneva.
Zhang, R., & Fujimori, S. (2020). The role of transport electrification in global climate change mitigation scenarios. Environmental Research Letters, 15(3), 034019. https://doi.org/10.1088/1748-9326/ab6658
Zheng, G., & Peng, Z. (2021). Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit). Energy Reports, 7, 1203–1216. https://doi.org/10.1016/j.egyr.2021.02.039
Zhou, G., Ou, X., & Zhang, X. (2013). Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions. Energy Policy, 59, 875–884. http://dx.doi.org/10.1016/j.enpol.2013.04.057
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Igor Rodrigues Arangues; Adriano Francisco Siqueira; Leandro Gonçalves de Aguiar; Patrícia Carolina Molgero da Rós; Diovana Aparecida dos Santos Napoleão; Hélcio José Izário Filho; Marco Aurélio Kondracki de Alcântara
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.