Biodegradabilidade de filmes baseados em biopolímero e óleo essencial de erva-doce

Autores

DOI:

https://doi.org/10.33448/rsd-v11i10.32257

Palavras-chave:

Embalagem; Compósito; Análise Estrutural; Biodegradabilidade.

Resumo

O processo de embalagem de alimentos é de imensa importância quando se trata de preservação de alimentos frescos ou processados. A maioria desses materiais são fabricados com plásticos sintéticos e sua eliminação representa um problema ambiental. Este estudo teve como objetivo preparar e caracterizar filmes compostos de biopolímeros, alginato de sódio (AS) e carboximetilcelulose (CMC), com adição de goma arábica e óleo essencial de erva doce. A análise de ângulo de contato mostra que os filmes são hidrofílicos. A superfície dos filmes apresentou estrutura firme, densa e coesa, porém com algumas rugosidades. Nas micrografias das amostras de filme contendo óleo essencial de erva doce nota-se estruturas parecidas com cristais sobre a matriz polimérica de CMC e AS. A umidade dos filmes foi, no geral, baixa (média de 14 %). Os menores percentuais de umidade apresentados foram para os filmes com de óleo essencial. Os filmes são biodegradáveis, esse processo ocorre, pois, as macromoléculas naturais, como proteínas, polissacarídeos, celulose e goma geralmente são degradáveis em sistemas biológicos pela hidrólise seguida de oxidação. Portanto, foi satisfatório a formação de embalagem comestível contendo polissacarídeos e emulsão de óleo essencial de erva-doce.

Referências

Anker, M., Stading, M., & Hermansson, A. (2001). Aging of whey protein films and the effect on mechanical and barrier properties. Journal of Agricultural and Food Chemistry. 49(2), 989-95.

Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries. Elsevier: Bioresource Technology. 99, 4661–7.

Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, Essex. 99(3), 384-91.

Bobbio, A. P., & Bobbio, F. O. (2001). Material de Embalagem: Química de Processamento de Alimentos (3a ed., Cap. 10, pp. 135-42). São Paulo: Varela.

Campos, A., Marconato, J. C., & Martins-Franchetti, S. M. (2011). Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate. Brazilian Archives Biology and Technology. 54(2), 1367-78.

Carvalho, R. A. (2002). Elaboração e caracterização de filmes à base de gelatina modificada enzimaticamente e quimicamente (Tese de doutorado). Universidade Estadual de Campinas, Campinas, SP, Brasil.

Charles, A., Chang, Y. H., Ko, W. C., Sririth, K., & Huang, T. C. (2005). Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. Journal of Agricultural and Food Chemistry. 53, 2717-25.

Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules. 139, 449–58.

Dickinson, E. (2003). Hydrocolloids at interface and the influence on the properties of dispersed systems. Food Hydrocolloids. 17, 25-39.

Dror, Y., Cohen, Y., & Yerushalmi-Rozen, R. (2006). Structure of Gum Arabic in Aqueous Solution. Journal of Polymer Science: Part B: Polymer Physics. 44, 3265-71.

Fakhouri, F. M., Fontes, L. C. B, Gonçalves, P. V. M., Milanez, C. R., Steel, C. J., & Queiroz, F. P. C. (2007). Filmes e coberturas comestíveis compostas à base de amidos nativos e gelatina na conservação e aceitação sensorial de uvas Crimson. Ciências e Tecnologia de Alimentos. 27(2), 369-75.

Ghizelini, A. M. (2005). Sucessão de Fungos em Acículas de Pinus taeda em decomposição (Dissertação de mestrado). Universidade Federal do Paraná, Curitiba, PR, Brasil.

Gontard, N., & Guilbert, S. (1996). Bio-packaging: Technology and properties of edible and/or biodegradable material of agricultural origin. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos. 30(1), 3-15.

Gulfraz, M., Mehmood, S., & Minhas, N. (2008). Composition and antimicrobial properties of essential oil of Foeniculum vulgare. African Journal of Biotechnology. 7(24), 4364-68.

Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oil and smoke antimicrobials. Food Microbiology. 27, 273-92.

Huillca, P. V. P. (2015). Propriedades superficiais de filmes à base de gelatina (Dissertação de mestrado). Universidade de São Paulo, São Paulo, SP, Brasil.

Jeevahan, J. J., Chandrasekaran, M., Venkatesan, S. P., Sriram, V., Joseph, G. B., Mageshwaran, G., & Durairaj, R. B. (2020). Scaling up difficulties and commercial aspects of edible films for food packaging: A Review. Trends in Food Science & Technology. 100, 210–22.

Jridi, M., Hajji, S., Ben Ayed, H., Lassoued, I., Mbarek, A., Kammoun, M., Souissi, N., & Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. International Journal of Biological Macromolecules. 67, 373-9.

Karbowiak, T., Debeaufort, F., & Voilley, A. (2006). Importance of surface tension characterization for food, pharmaceutical and packaging products: A Review. Critical Reviews in Food Science and Nutrition. 45, 391-407.

Kaushik, V., & Roos, Y. H. (2007). Limonene encapsulation in freeze-drying of gum arabic–sucrose–gelatin systems. Food Science and Technology – LWT. 40, 1381–91.

Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: A Review. Food Technology. 40, 47-59.

Mamani, H. N. C. (2009). Produção e caracterização de filmes compostos de metilcelulose, glucomanana, pectina, gelatina e lipídios (Tese de doutorado). Universidade Estadual de Campinas, Campinas, SP, Brasil.

Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydrate Polymers. 101, 20–28.

Melo, P. T. S., Otoni, C. G., Barud, H. S., Aouada, F. A., & Moura, M. R. De (2020). Upcycling microbial cellulose scraps into nanowhiskers with engineered performance as fillers in all-cellulose composites. ACS Applied Materials & Interfaces. 12, 46661-6.

Merle, D., Charpentier, G. ,& Mocanu, S. (1999). European Polymer Journal. 1(35).

Mohamed, S. A. A., El-Sakhawyb, M., & El-Sakhawyc, M. A. (2020). Polysaccharides, protein and lipid - based natural edible films in food packaging: A Review. Carbohydrate Polymers. 238, 116-78.

Mostafavi, F. S., & Zaeimb, D. (2020). Agar-based edible films for food packaging applications: A Review. International Journal of Biological Macromolecules. 159, 1165–76.

Nunes, J. C., Melo, P. T. S., Lorevice, M. V., Aouada, F. A., & De Moura, M. R. (2021). Effect of green tea extract on gelatin-based films incorporated with lemon essential oil. Journal of Food Science and Technology. 58, 1-8.

Otoni, C. G., De Moura, M. R., Aouada, F. A., Camilloto, G. P., Cruz, R. S., Lorevice, M. V., Soares, N. F. F., & Mattoso, L. H. C. (2014). Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids. 41, 188-94.

Pelissari, F. M. (2009). Produção e caracterização de filmes de amido de mandioca, quitosana e glicerol com incorporação de óleo essencial de orégano (Dissertação de mestrado). Universidade Estadual de Londrina, Londrina, PR, Brasil.

Pereira, M. C., Vilela, G. R. Costa, L. M. A. S., Silva, R. F., Fernandes, A. F., Fonseca, E. W. N., & Picolli, R. H. (2006). Inibição do desenvolvimento fúngico através da utilização de óleos essenciais de condimentos. Ciências e Agrotecnologia. 30(4), 731-8.

Pires, V. G. A., & Moura, M. R. De (2017). Preparação de novos filmes poliméricos contendo nanoemulsões do óleo de melaleuca, copaíba e limão para aplicação como biomaterial. Química Nova (Online). 40, 1-5.

Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT – Food Science and Technology. 38(8), 859-65.

Priyadarshi, R., & Rhim, J. W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science and Emerging Technologies. 62.

Saranti, T. F. S., Melo, P. T. S., Cerqueira, M. A., Aouada, F. A., & Moura, M. R. De (2021) Performance of Gelatin Films Reinforced with Cloisite Na+ and Black Pepper Essential Oil Loaded Nanoemulsion. Polymers. 13, 4298.

Souza, S. M. A. (2001). Elaboração e caracterização de filmes comestíveis biodegradáveis a base de proteínas miofibrilares de origem bovina (Tese de doutorado). Universidade Estadual de Campinas, Campinas, SP, Brasil.

Tulamandi, S., Rangarajanb, V., Rizvic, S. S. H., Singhald, R. S., Chattopadhyaya, S. K R. & Sahaa; N. C. (2016). A biodegradable and edible packaging film based on papaya puree, gelatin, and defatted soy protein. Food Packaging and Shelf Life. 10, 60–71.

Villadiego, A. M. D., Soares, N. F. F., Andrade, N. J., Puscmann, R., Minim, V. P. R., & Cruz, R. (2005). Filmes e revestimentos comestíveis na conservação de produtos alimentícios. Revista Ceres. 52, 221-44.

Vilpoux, O., & Avérous, L. (2003). Plásticos à base de amido. In: CEREDA, M. (Org), Tecnologia, usos e potencialidades de tuberosas amiláceas latino americanas (v. 3). São Paulo: Fundação Cargill.

WWF – World Wide Fund for Nature. Solucionar a poluição plástica: transparência e responsabilização (2019). https://www.wwf.org.br/?70222/Brasil-e-o-4-pais-do-mundo-que-mais-gera-lixo-plastico.

Xu, T., Gao, C., Feng, X., Yang, Y., Shen, X., & Tang, X. (2019). Structure, physical and antioxidant properties of chitosan-gum Arabic edible films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules.134, 230–6.

Downloads

Publicado

03/08/2022

Como Citar

SANTOS, B. dos .; COSTA, F. M. da .; RODRIGUES, T. F. .; JAHNO, V. D.; AOUADA, F. A.; AOUADA, M. R. de M. Biodegradabilidade de filmes baseados em biopolímero e óleo essencial de erva-doce. Research, Society and Development, [S. l.], v. 11, n. 10, p. e351111032257, 2022. DOI: 10.33448/rsd-v11i10.32257. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32257. Acesso em: 22 dez. 2024.

Edição

Seção

Engenharias