Efeito antibacteriano e liberação de tetraciclina de matrizes de poli(Ɛ-caprolactona) obtidas por polimerização de iodo
DOI:
https://doi.org/10.33448/rsd-v11i9.32939Palavras-chave:
Poli(ε-caprolactona); Polímero bioabsorvível; Drug delivery; Atividade antimicroba.Resumo
O desenvolvimento de dispositivos para controle da liberação de medicamentos está em constante inovação tecnológica. O objetivo é melhorar a liberação de medicamentos nas áreas-alvo. A poli(ε-caprolactona) (PCL) tem sido amplamente investigada devido à taxa de degradação, biocompatibilidade, disponibilidade, ausência de toxicidade, custo e boa adesão a um grande número de fármacos. Assim, no presente estudo foi associado o polímero PCL com o antibiótico tetraciclina como sistema de liberação local. PCL foi obtido por polimerização por abertura de anel do monômero Ɛ-caprolactona (Ɛ-CL). As amostras foram caracterizadas por infravermelho transformado de Fourier (FTIR), calorimetria de varredura diferencial (DSC), análise termogravimétrica (TGA) e análise de difração de raios-X (raios-X). Da mesma forma, foi investigada a atividade antimicrobiana contra bactérias gram-positivas (S. aureus) e bactérias gram-negativas (E. coli, P. mirabilis, P. aeruginosa e K. pneumoniae). De acordo com os resultados, o antibiótico tetraciclina foi incorporado com sucesso às matrizes PCL. Liberam tetraciclina nas taxas ideais e apresentam atividade antibacteriana. Assim, este material tem potencial para ser utilizado em implantes para liberação de fármacos.
Referências
Agarwal, S., & Speyerer, C. (2010). Degradable blends of semi-crystalline and amorphous branched poly(caprolactone): Effect of microstructure on blend properties. Polymer, 51(5), 1024–1032. https://doi.org/10.1016/j.polymer.2010.01.020
Bartzatt, R., Koziol, K., Benish, T., & Stoddard, J. (2001). Synthesis and analysis of ethylated tetracycline, an antibiotic derivative that inhibits the growth of tetracycline-resistant XL1-Blue bacteria. Biotechnology and Applied Biochemistry, 33(2), 65. https://doi.org/10.1042/BA20000079
Capellato, P., Claro, A. P. R. A., Silva, G., & Zavaglia, C. A. C. (2018). Antimicrobial effect of TiO2 nanotubes coating for dental implant. Dental Materials, 34, e21. https://doi.org/10.1016/j.dental.2018.08.043
Capellato, P., Camargo, S. E. A., & Sachs, D. (2020). Biological Response to Nanosurface Modification on Metallic Biomaterials. Current Osteoporosis Reports, 1–6. https://doi.org/10.1007/s11914-020-00635-x
Cui, W., Zhou, Y., & Chang, J. (2010). Electrospun nanofibrous materials for tissue engineering and drug delivery. Science and Technology of Advanced Materials, 11(1), 014108. https://doi.org/10.1088/1468-6996/11/1/014108
de Arruda Almeida, K., de Queiroz, A. A. A., Higa, O. Z., Abraham, G. A., & San Román, J. (2004). Macroporous poly(ϵ-caprolactone) with antimicrobial activity obtained by iodine polymerization. Journal of Biomedical Materials Research Part A, 68A(3), 473–478. https://doi.org/10.1002/jbm.a.20085
De Queiroz, A. A. A., França, É. J., Abraham, G. A., & Román, J. S. (2002). Ring-opening polymerization of ϵ-caprolactone by iodine charge-transfer complex. Journal of Polymer Science Part B: Polymer Physics, 40(8), 714–722. https://doi.org/10.1002/polb.10133
Ezhilarasu, H., Ramalingam, R., Dhand, C., Lakshminarayanan, R., Sadiq, A., Gandhimathi, C., Ramakrishna, S., Bay, B. H., Venugopal, J. R., & Srinivasan, D. K. (2019). Biocompatible aloe vera and tetracycline hydrochloride loaded hybrid nanofibrous scaffolds for skin tissue engineering. International Journal of Molecular Sciences, 20(20). https://doi.org/10.3390/ijms20205174
Fereshteh, Z., Nooeaid, P., Fathi, M., Bagri, A., & Boccaccini, A. R. (2015). Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application. Data in Brief, 4, 524–528. https://doi.org/10.1016/j.dib.2015.07.013
Fernandes, N. S., Da Silva Carvalho Filho, M. A., Mendes, R. A., & Ionashiro, M. (1999). Thermal Decomposition of Some Chemotherapic Substances. Journal of the Brazilian Chemical Society, 10(6), 459–462. https://doi.org/10.1590/S0103-50531999000600007
Grossen, P., Witzigmann, D., Sieber, S., & Huwyler, J. (2017). PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. In Journal of Controlled Release (Vol. 260, pp. 46–60). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2017.05.028
Iman, M., Barati, A., & Safari, S. (2020). Characterization, in vitro antibacterial activity, and toxicity for rat of tetracycline in a nanocomposite hydrogel based on PEG and cellulose. Cellulose, 27(1), 347–356. https://doi.org/10.1007/s10570-019-02783-5
Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, 844–862. https://doi.org/10.1016/J.MSEC.2019.04.064
Kim, J., Kudisch, M., Mudumba, S., Asada, H., Aya-Shibuya, E., Bhisitkul, R. B., & Desai, T. A. (2016). Biocompatibility and pharmacokinetic analysis of an intracameral polycaprolactone drug delivery implant for glaucoma. Investigative Ophthalmology and Visual Science, 57(10), 4341–4346. https://doi.org/10.1167/iovs.16-19585
Kim, Y., Kim, J., Lee, H., Shin, W. R., Lee, S., Lee, J., Park, J. Il, Jhun, B. H., Kim, Y. H., Yi, S. J., & Kim, K. (2019). Tetracycline analogs inhibit osteoclast differentiation by suppressing MMP-9-Mediated Histone H3 cleavage. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/ijms20164038
Kuznetsov, K. A., Stepanova, A. O., Kvon, R. I., Douglas, T. E. L., Kuznetsov, N. A., Chernonosova, V. S., Zaporozhchenko, I. A., Kharkova, M. V., Romanova, I. V., Karpenko, A. A., & Laktionov, P. P. (2018). Electrospun produced 3D matrices for covering of vascular stents: Paclitaxel release depending on fiber structure and composition of the external environment. Materials, 11(11). https://doi.org/10.3390/ma11112176
Leypold, C. F., Reiher, M., Brehm, G., Schmitt, M. O., Schneider, S., Matousek, P., & Towrie, M. (2003). Tetracycline and derivatives - Assignment of IR and Raman spectra via DFT calculations. Physical Chemistry Chemical Physics, 5(6), 1149–1157. https://doi.org/10.1039/b210522e
Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for Drug Delivery Systems. Annual Review of Chemical and Biomolecular Engineering, 1(1), 149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
Lü, L.-X., Wang, Y.-Y., Mao, X., Xiao, Z.-D., & Huang, N.-P. (2012). The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells. Biomedical Materials, 7(1), 015002. https://doi.org/10.1088/1748-6041/7/1/015002
Ma, Z., & Moulton, B. (2011). Recent advances of discrete coordination complexes and coordination polymers in drug delivery. In Coordination Chemistry Reviews (Vol. 255, Issues 15–16, pp. 1623–1641). Elsevier. https://doi.org/10.1016/j.ccr.2011.01.031
Macedo, A. S., Castro, P. M., Roque, L., Thomé, N. G., Reis, C. P., Pintado, M. E., & Fonte, P. (2020). Novel and revisited approaches in nanoparticle systems for buccal drug delivery. In Journal of Controlled Release (Vol. 320, pp. 125–141). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2020.01.006
Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition, 29(7–9), 863–893. https://doi.org/10.1080/09205063.2017.1394711
Manoukian, O. S., Arul, M. R., Sardashti, N., Stedman, T., James, R., Rudraiah, S., & Kumbar, S. G. (2018). Biodegradable polymeric injectable implants for long-term delivery of contraceptive drugs. Journal of Applied Polymer Science, 135(14). https://doi.org/10.1002/app.46068
Nagiah, N., Murdock, C. J., Bhattacharjee, M., Nair, L., & Laurencin, C. T. (2020). Development of Tripolymeric Triaxial Electrospun Fibrous Matrices for Dual Drug Delivery Applications. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57412-0
Pathak, M., Coombes, A. G. A., Ryu, B. M., Cabot, P. J., Turner, M. S., Palmer, C., Wang, D., & Steadman, K. J. (2018). Sustained Simultaneous Delivery of Metronidazole and Doxycycline From Polycaprolactone Matrices Designed for Intravaginal Treatment of Pelvic Inflammatory Disease. Journal of Pharmaceutical Sciences, 107(3), 863–869. https://doi.org/10.1016/j.xphs.2017.09.033
Capellato, P., Marino, C. E. B., Silva, G., Vasconcelos, L. V. B., Cardoso, R. P., & Kayam Hamdar, D. S. (2020). Surface treatment with silver particles isles on Titanium cp: study of antimicrobial activity. Research, Society and Development, 9(4). https://doi.org/http://dx.doi.org/10.33448/rsd-v9i4.2662
Puoci, F., Iemma, F., & Picci, N. (2008). Stimuli-Responsive Molecularly Imprinted Polymers for Drug Delivery: A Review. Current Drug Delivery, 5(2), 85–96. https://doi.org/10.2174/156720108783954888
Rezk, A. I., Lee, J. Y., Son, B. C., Park, C. H., & Kim, C. S. (2019). Bi-layered nanofibers membrane loaded with titanium oxide and tetracycline as controlled drug delivery system for wound dressing applications. Polymers, 11(10). https://doi.org/10.3390/polym11101602
Schlesinger, E., Ciaccio, N., & Desai, T. A. (2015). Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design. Materials Science and Engineering C, 57, 232–239. https://doi.org/10.1016/j.msec.2015.07.027
Siepmann, J., & Peppas, N. A. (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). In Advanced Drug Delivery Reviews (Vol. 64, Issue SUPPL., pp. 163–174). Elsevier. https://doi.org/10.1016/j.addr.2012.09.028
Souza, S. O. L., Cotrim, M. A. P., Oréfice, R. L., Carvalho, S. G., Dutra, J. A. P., de Paula Careta, F., Resende, J. A., & Villanova, J. C. O. (2018). Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with β-cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical and biological evaluation. Journal of Materials Science: Materials in Medicine, 29(5). https://doi.org/10.1007/s10856-018-6079-8
Thomas, M. V., Jarboe, G., & Frazer, R. Q. (2008). Infection control in the dental office. Dental Clinics of North America, 52(3), 609–628. https://doi.org/10.1016/J.CDEN.2008.02.002
Verma, L. T., Singh, N., Gorain, B., Choudhury, H., Tambuwala, M. M., Kesharwani, P., & Shukla, R. (2020). Recent advances in self-assembled nanoparticles for drug delivery. Current Drug Delivery, 17. https://doi.org/10.2174/1567201817666200210122340
Verma, R. P. (2020). Titanium based biomaterial for bone implants: A mini review. Materials Today: Proceedings, 26, 3148–3151. https://doi.org/10.1016/J.MATPR.2020.02.649
Wang, X., Wang, Y., Wei, K., Zhao, N., Zhang, S., & Chen, J. (2009). Drug distribution within poly(ε-caprolactone) microspheres and in vitro release. Journal of Materials Processing Technology, 209(1), 348–354. https://doi.org/10.1016/J.JMATPROTEC.2008.02.004
Wsoo, M. A., Shahir, S., Mohd Bohari, S. P., Nayan, N. H. M., & Razak, S. I. A. (2020). A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. In Carbohydrate Research (Vol. 491, p. 107978). Elsevier Ltd. https://doi.org/10.1016/j.carres.2020.107978
Xie, Y., Liu, C., Huang, H., Huang, J., Deng, A., Zou, P., & Tan, X. (2018). Bone-targeted delivery of simvastatin-loaded PEG-PLGA micelles conjugated with tetracycline for osteoporosis treatment. Drug Delivery and Translational Research, 8(5), 1090–1102. https://doi.org/10.1007/s13346-018-0561-1
Yeh, Y.-C., Huang, T.-H., Yang, S.-C., Chen, C.-C., & Fang, J.-Y. (2020). Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Frontiers in Chemistry, 8, 286. https://doi.org/10.3389/fchem.2020.00286
Zupančič, Š., Preem, L., Kristl, J., Putrinš, M., Tenson, T., Kocbek, P., & Kogermann, K. (2018). Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens. European Journal of Pharmaceutical Sciences, 122, 347–358. https://doi.org/10.1016/j.ejps.2018.07.024
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Lidiane Gomes da Silva; Amanda de Carvalho Pereira Moraes; Patrícia Capellato; Gilza Carla Ribeiro; Ana Angélica Martins Costa; Álvaro Antônio Alencar de Queiroz; Daniela Sachs
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.