Computational analysis of the distribution of occlusal overloads exerted on zirconia implants

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33173

Keywords:

Dental Implants; Bruxism; Finite element analysis.

Abstract

From the finite element analysis, the objective of the study was to evaluate the effectiveness of the occlusal splint against the overload of tensions and deformations exerted on zirconia implants. Occlusal loadings were performed at 300 N intensity, at 45º and 90º, with or without the use of an occlusal splint. The groups were divided into: cP/cV – with occlusal splint and vertical load; cP/cO – with occlusal splint and oblique loading; sP/cV – without occlusal splint and vertical load; sP/cO – without occlusal splint and oblique loading. For total deformation, the control groups showed evenly distributed stresses (~0.05 mm in cP/cO and ~0.008 mm in cP/cV), while for the groups without splint, the highest stress was observed in sP/cO. The maximum main implant and bone stress values, respectively, were higher for sP/cO (119 MPa and ~49 MPa) compared to the others (cP/cV 16 MPa and ~4 MPa; cP/cO 20 MPa and ~2, 5 MPa; sP/cV 16 MPa, and ~3.9 MPa). As for the minimum main implant and bone tensions, the highest values were for sP/cO (~32 MPa and ~61 MPa) when compared to the others (cP/cV ~4.6 MPa and ~18 MPa; cP/cO 3 MPa and ~10 MPa; sP/cV ~3.2 MPa, and ~18 MPa). The occlusal splint was effective for better stress distribution on the zirconia implant. The vertical load standardized the direction of voltages in the sP/cV group, promoting similar results to the control groups cP/cV and cP/CO. The sP/cO group presented the worst, with high values of heterogeneously distributed results.

References

Bankoğlu Güngör, M., & Yılmaz, H. (2016). Evaluation of stress distributions occurring on zirconia and titanium implant-supported prostheses: A three-dimensional finite element analysis. J Prosthet Dent., 116(3), 346-55.

Bidez, M. W., & Misch, C. E. (1992). Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol., 18(3), 264-74.

Çaglar, A., Bal, B. T., Karakoca, S., Aydın, C., Yılmaz, H., & Sarısoy, S. (2011). Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants. Int J Oral Maxillofac Implants, 26(5), 961-9.

Castellanos-Cosano, L., Rodriguez-Perez, A., Spinato, S., Wainwright, M., Machuca-Portillo, G., Serrera-Figallo, M. A., & Torres-Lagares D. (2019). Descriptive retrospective study analyzing relevant factors related to dental implant failure. Med Oral Patol Oral Cir Bucal, 1;24(6), e726-e738.

Choi, S. M., Choi, H., Lee, D. H., & Hong, M. H. (2021). Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis. J Adv Prosthodont.,13(6), 396-407.

Chrcanovic, B. R., Kisch, J., Albrektsson, T., & Wennerberg, A. (2017). Bruxism and dental implant treatment complications: a retrospective comparative study of 98 bruxer patients and a matched group. Clin Oral Implants Res., 28(7), e1-e9.

De Angelis, F., Papi, P., Mencio, F., Rosella, D., Di Carlo, S., & Pompa G. (2017). Implant survival and success rates in patients with risk factors: results from a long-term retrospective study with a 10 to 18 years follow-up. Eur Rev Med Pharmacol Sci., 21(3), 433-437.

de Souza Batista, V. E., Verri, F. R., Lemos, C. A., Cruz, R. S., Noritomi, P. Y., & Pellizzer, E. P. (2021). A 3D Finite Element Analysis of Bone Tissue in 3-Unit Implant-Supported Prostheses: Effect of Splinting Factor and Implant Length and Diameter. Eur J Prosthodont Restor Dent., 29(2), 76-83.

Ercal, P., Taysi, A. E., Ayvalioglu, D. C., Eren, M. M., & Sismanoglu, S. (2021). Impact of peri-implant bone resorption, prosthetic materials, and crown to implant ratio on the stress distribution of short implants: a finite element analysis. Med Biol Eng Comput., 59(4), 813-824.

Goiato, M. C., Sonego, M. V., dos Santos, D. M., & da Silva, E. V. (2014). Implant rehabilitation in bruxism patient. BMJ Case Rep., 6, bcr2014204080.

Goldstein, G., DeSantis, L., & Goodacre, C. (2021). Bruxism: Best Evidence Consensus Statement. J Prosthodont., 30(S1), 91-101.

Göre E, Evlioğlu G. Assessment of the effect of two occlusal concepts for implant-supported fixed prostheses by finite element analysis in patients with bruxism. J Oral Implantol. 2014 Feb;40(1):68-75. doi: 10.1563/AAID-JOI-D-11-00044. Epub 2012 Jan 15. PMID: 22242658.

Henrique, M. N., Caldas, R. A., Baroudi, K., Amaral, M., Vitti, R. P., & Silva-Concílio, L. R. (2021). Influence of Flat Occlusal Splint on Stresses Induced on Implants for Different Fixed Prosthetic Systems. Eur J Prosthodont Restor Dent., 29(2), 84-92.

Kullar, A. S., & Miller, C. S. (2019). Are There Contraindications for Placing Dental Implants? Dent Clin North Am., 63(3), 345-362.Lal SJ, & Weber KK. (2022). Bruxism Management. In: StatPearls [Internet]. ID Publishing: NBK482466.

Ereifej, N., Rodrigues, F. P., Silikas, N., & Watts, D. C. (2011). Experimental and FE shearbonding strength at core/veneer interfaces in bilayered ceramics. Dent Mater., 27, 590-597.

El-Anwar, M. I., El-Zawahry, M. M., Ibraheem, E. M., Nassani, M. Z, & ElGabry, H. (2017). New dental implant selection criterion based on implant design. Eur J Dent., 11(2), 186-191.

Pellizzer, E. P., Falcón-Antenucci, R. M., de Carvalho, P. S., Santiago, J. F., de Moraes, S. L., & de Carvalho, B. M. (2010). Photoelastic analysis of the influence of platform switching on stress distribution in implants. J Oral Implantol., 36(6), 419-24.

Pjetursson, B. E., Valente, N. A., Strasding, M., Zwahlen, M., Liu, S., & Sailer, I. (2018). A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin Oral Implants Res., 29(16), 199-214.

Prakash, M., Audi, K., & Vaderhobli, R. M. (2021). Long-Term Success of All-Ceramic Dental Implants Compared with Titanium Implants. J Long Term Eff Med Implants., 31(1), 73-89.

Roos-Jansåker, A. M., Lindahl, C., Renvert, H., & Renvert, S. Nine- to fourteen-year follow-up of implant treatment. Part I: implant loss and associations to various factors. J Clin Periodontol., 33(4), 283-9.

Torcato, L. B., Pellizzer, E. P., Verri, F. R., Falcón-Antenucci, R. M., Santiago Júnior, J. F., & de Faria Almeida, D. A. (2015). Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis. J Prosthet Dent., 114(5), 644-51.

Tsumanuma, K. T. S., Caldas, R. A., Silva, I. D., Miranda, M. E., Brandt, W. C., & Vitti, R. P. (2021). Finite Element Analysis of Stress in Anterior Prosthetic Rehabilitation with Zirconia Implants with and without Cantilever. Eur J Dent.,15(4), 669-674.

Tyagi, R., Kumar, S., Aggarwal, R., Choudhary, S., Malethia, A., & Saini, N. (2020). A 3-D Finite Element Analysis of Stress Distribution on Implant-supported Fixed Prosthesis with Four Different Commercially Available Implant Systems. J Contemp Dent Pract., 21(8), 835-840.

Vavrina, J., & Vavrina, J. (2020). Bruxismus: Einteilung, Diagnostik und Behandlung [Bruxism: Classification, Diagnostics and Treatment]. Praxis, 109(12), 973-978.

Vieriu, M., Țănculescu, O., Mocanu, F., Aniculăesă, A., Doloca, A., Luchian, I., & Mârtu, S. (2015). The validation of an acrylic resin for the completion of biomechanical studies on a mandibular model. Roman J Oral Rehab., 7, 74-79.

Zhou, Y., Gao, J., Luo, L., & Wang, Y. (2016). Does Bruxism Contribute to Dental Implant Failure? A Systematic Review and Meta-Analysis. Clin Implant Dent Relat Res., 18(2), 410-20.

Published

15/08/2022

How to Cite

SAMPAIO FILHO, C. G. da S.; MIRANDA, M. E.; OLIVIERI, K. A. N. .; CALDAS, R. A.; BRANDT, W. C.; VITTI, R. P. Computational analysis of the distribution of occlusal overloads exerted on zirconia implants. Research, Society and Development, [S. l.], v. 11, n. 11, p. e65111133173, 2022. DOI: 10.33448/rsd-v11i11.33173. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33173. Acesso em: 18 apr. 2024.

Issue

Section

Health Sciences