Purificação biológica de biogás por processo fotossintético utilizando microalgas
DOI:
https://doi.org/10.33448/rsd-v11i13.35327Palavras-chave:
Biocombustível; Biometano; Microalgas; Purificador; Sustentabilidade.Resumo
A purificação fotossintética usando culturas de microalgas tem surgido como uma tecnologia eficiente para a remoção de gás carbônico do biogás. Nesse método, as microalgas capturam o CO2 via fotossíntese e liberam O2 para o meio de cultura, que é utilizado por bactérias oxidantes de enxofre para a oxidação de H2S em sulfatos. O objetivo desta pesquisa foi avaliar a purificação do biogás por processo fotossintético de microalgas. Para isso, foi desenvolvido um protótipo de purificador em escala piloto. A configuração experimental constou de um sistema de dois estágios, constituído um por fotobiorreator de cultivo de microalgas interligado a uma coluna de absorção. A circulação do líquido foi descendente, retornando para o fotobiorreator pela parte inferior da coluna. O biogás foi injetado na coluna de absorção em regime de contrafluxo ao líquido. As análises foram realizadas com foco nos gases CO2, CH4 e O2, presentes no biogás afluente e efluente à coluna de absorção. No biogás bruto, a concentração de CO2 estava em torno de 32%; o CH4 variou de 63,08% a 64,32 %; e O2 de 0,17% a 0,71%. Após a purificação, o biogás apresentava concentrações de CO2 variando de 9,15% a 18,46%; CH4 de 71,4% a 76,2%; e de O2 entre 1,24% a 3,26%. Eficiências de remoção de CO2 de 42,46% a 72,02% foram registradas no biogás purificado. Os resultados mostraram que o protótipo utilizando o processo biológico com microalgas mostrou-se satisfatório e promissor para a purificação do biogás.
Referências
Abu Hajar, H. A., Guy Riefler, R., & Stuart, B. J. (2016). Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans. Environmental Engineering Research, 21(3), 265–275. https://doi.org/10.4491/EER.2016.005
Ángeles, R., Arnaiz, E., Gutiérrez, J., Sepúlveda-Muñoz, C. A., Fernández-Ramos, O., Muñoz, R., & Lebrero, R. (2020). Optimization of photosynthetic biogas upgrading in closed photobioreactors combined with algal biomass production. Journal of Water Process Engineering, 38, 101554. https://doi.org/10.1016/J.JWPE.2020.101554
Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P., & Lyczko, N. (2017). A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste and Biomass Valorization, 8(2), 267–283. https://doi.org/10.1007/s12649-016-9826-4
Aziz, M. M. A., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaacob, H., Ahsan, A., Imteaz, M. A., & Arifuzzaman. (2020). Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renewable and Sustainable Energy Reviews, 119, 106215. https://doi.org/10.1016/j.rser.2019.109603
Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., & Muñoz, R. (2014). Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environmental Science and Technology, 48(1), 573–581. https://doi.org/10.1021/ES403596M/SUPPL_FILE/ES403596M_SI_001.PDF
Bose, A., Lin, R., Rajendran, K., O’Shea, R., Xia, A., & Murphy, J. D. (2019). How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. Biotechnology Advances, 37(8), 107444. https://doi.org/10.1016/j.biotechadv.2019.107444
Confederação Nacional da Indústria. (2019). Especificação do gás natural: oportunidades e experiências internacional. CNI.
Das, J., Ravishankar, H., & Lens, P. N. L. (2022). Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 304, 114198. https://doi.org/10.1016/J.JENVMAN.2021.114198
de Arespacochaga, N., Valderrama, C., Mesa, C., Bouchy, L., & Cortina, J. L. (2014). Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in Solid Oxide Fuel Cells. Chemical Engineering Journal, 255, 677–685. https://doi.org/10.1016/J.CEJ.2014.06.073
Flores-Cortés, M., Pérez-Trevilla, J., de María Cuervo-López, F., Buitrón, G., & Quijano, G. (2021). H2S oxidation coupled to nitrate reduction in a two-stage bioreactor: Targeting H2S-rich biogas desulfurization. Waste Management, 120, 76–84. https://doi.org/10.1016/J.WASMAN.2020.11.024
Franco-Morgado, M., Alcántara, C., Noyola, A., Muñoz, R., & González-Sánchez, A. (2017). A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime. Science of The Total Environment, 592, 419–425. https://doi.org/10.1016/J.SCITOTENV.2017.03.077
Franco-Morgado, M., Tabaco-Angoa, T., Ramírez-García, M. A., & González-Sánchez, A. (2021). Strategies for decreasing the O2 content in the upgraded biogas purified via microalgae-based technology. Journal of Environmental Management, 279, 111813. https://doi.org/10.1016/J.JENVMAN.2020.111813
Jacob, J. M., Ravindran, R., Narayanan, M., Samuel, S. M., Pugazhendhi, A., & Kumar, G. (2020). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science and Health. https://doi.org/10.1016/j.coesh.2019.12.005
Kadam, R., & Panwar, N. L. (2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73, 892–903. https://doi.org/10.1016/j.rser.2017.01.167
Khan, I. U., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277–294. https://doi.org/10.1016/j.enconman.2017.08.035
Konrad, O., Akwa, J. V., Koch, F. F., Tonetto, M., & Jaqueline, L. (2016). Quantification and characterization of the production of biogas from blends of agro-industrial wastes in a large-scale demonstration plant. Acta Scientiarum. Technology, 38(4), 415–421.
Koutra, E., Economou, C. N., Tsafrakidou, P., & Kornaros, M. (2018). Bio-Based Products from Microalgae Cultivated in Digestates. Trends in Biotechnology, 36(8), 819–833. https://doi.org/10.1016/j.tibtech.2018.02.015
Kunz, A., Steinmetz, R. L. R., & Amaral, A. C. (2019). Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato. Sbera: Embrapa Suíno e Aves.
Meier, L., Barros, P., Torres, A., Vilchez, C., & Jeison, D. (2017). Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod. Renewable Energy, 106, 17–23. https://doi.org/10.1016/J.RENENE.2017.01.009
Meier, L., Stará, D., Bartacek, J., & Jeison, D. (2018). Removal of H2S by a continuous microalgae-based photosynthetic biogas upgrading process. Process Safety and Environmental Protection, 119, 65–68. https://doi.org/10.1016/J.PSEP.2018.07.014
Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329–1337. https://doi.org/10.1016/J.JCLEPRO.2017.06.045
Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Reviews in Environmental Science and Biotechnology, 14(4), 727–759. https://doi.org/10.1007/s11157-015-9379-1
Noorain, R., Kindaichi, T., Ozaki, N., Aoi, Y., & Ohashi, A. (2019). Integrated biological–physical process for biogas purification effluent treatment. Journal of Environmental Sciences, 83, 110–122. https://doi.org/10.1016/J.JES.2019.02.028
Pinto, R. L. da S., Vieira, A. C., Scarpetta, A., Marques, F. S., Jorge, R. M. M., Bail, A., Jorge, L. M. M., Corazza, M. L., & Ramos, L. P. (2022). An overview on the production of synthetic fuels from biogas. Bioresource Technology Reports, 18, 101104. https://doi.org/10.1016/J.BITEB.2022.101104
Posadas, E., Marín, D., Blanco, S., Lebrero, R., & Muñoz, R. (2017). Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. Bioresource Technology, 232, 133–141. https://doi.org/10.1016/J.BIORTECH.2017.01.071
Posadas, E, Szpak, D., Lombó, F., Domínguez, A., Díaz, I., Blanco, S., García-Encina, P. A., & Muñoz, R. (2015). Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes. Journal of Applied Phycology 2015 28:4, 28(4), 2147–2157. https://doi.org/10.1007/S10811-015-0758-3
Prandini, J. M., da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Michelon, W., & Soares, H. M. (2016). Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresource Technology, 202, 67–75. https://doi.org/10.1016/j.biortech.2015.11.082
Rehman, M., Kesharvani, S., Dwivedi, G., & Gidwani Suneja, K. (2022). Impact of cultivation conditions on microalgae biomass productivity and lipid content. Materials Today: Proceedings, 56, 282–290. https://doi.org/10.1016/J.MATPR.2022.01.152
Rodero, M. del R., Lebrero, R., Serrano, E., Lara, E., Arbib, Z., García-Encina, P. A., & Muñoz, R. (2019). Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor. Bioresource Technology, 279, 43–49. https://doi.org/10.1016/J.BIORTECH.2019.01.110
Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., & Muñoz, R. (2018). Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. Algal Research, 33, 284–290. https://doi.org/10.1016/J.ALGAL.2018.06.001
Roy, U. K., Radu, T., & Wagner, J. L. (2021). Carbon-negative biomethane fuel production: Integrating anaerobic digestion with algae-assisted biogas purification and hydrothermal carbonisation of digestate. Biomass and Bioenergy, 148, 106029. https://doi.org/10.1016/J.BIOMBIOE.2021.106029
Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5), 1633–1645. https://doi.org/10.1016/J.BIOMBIOE.2011.02.033
Saratale, R. G., Kumar, G., Banu, R., Xia, A., Periyasamy, S., & Dattatraya Saratale, G. (2018). A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresource Technology, 262, 319–332. https://doi.org/10.1016/j.biortech.2018.03.030
Tabatabaei, M., Aghbashlo, M., Valijanian, E., Kazemi Shariat Panahi, H., Nizami, A. S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., & Karimi, K. (2020). A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies. Renewable Energy, 146, 1204–1220. https://doi.org/10.1016/j.renene.2019.07.037
Thiruselvi, D., Kumar, P. S., Kumar, M. A., Lay, C. H., Aathika, S., Mani, Y., Jagadiswary, D., Dhanasekaran, A., Shanmugam, P., Sivanesan, S., & Show, P. L. (2021). A critical review on global trends in biogas scenario with its up-gradation techniques for fuel cell and future perspectives. International Journal of Hydrogen Energy, 46(31), 16734–16750. https://doi.org/10.1016/J.IJHYDENE.2020.10.023
Toledo-Cervantes, A., Madrid-Chirinos, C., Cantera, S., Lebrero, R., & Muñoz, R. (2017). Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. Bioresource Technology, 225, 336–342. https://doi.org/10.1016/J.BIORTECH.2016.11.087
Uggetti, E., Sialve, B., Latrille, E., & Steyer, J. P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437–443. https://doi.org/10.1016/J.BIORTECH.2013.11.036
Xu, M., Xue, Z., Liu, J., Sun, S., Zhao, Y., & Zhang, H. (2022). Observation of few GR24 induced fungal-microalgal pellets performance for higher pollutants removal and biogas quality improvement. Energy, 244, 123171. https://doi.org/10.1016/J.ENERGY.2022.123171
Xu, M., Xue, Z., Sun, S., Zhao, C., Liu, J., Liu, J., & Zhao, Y. (2020). Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Bioresource Technology, 314, 123766. https://doi.org/10.1016/J.BIORTECH.2020.123766
Zhang, Y., Kawasaki, Y., Oshita, K., Takaoka, M., Minami, D., Inoue, G., & Tanaka, T. (2021). Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renewable Energy, 168, 119–130. https://doi.org/10.1016/J.RENENE.2020.12.058
Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., Li, K., Liu, J., & Ruan, R. (2017). Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, 1163–1175. https://doi.org/10.1016/j.rser.2017.03.065
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Aline Antonia Castro; Bruna Carolina Horn; Christine Montemaggiore Becker; Guilherme Oliveira; Odorico Konrad
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.