Avaliação do perfil fenólico e do potencial antioxidante, anticolinesterase e anti-candida in vitro e in silico de extratos de Tapirira guianensis Aubl.

Autores

DOI:

https://doi.org/10.33448/rsd-v11i13.35378

Palavras-chave:

Tapirira guianensis; Antioxidante; Acetilcolinesterase; Anti-Candida.

Resumo

Extratos polares de Tapirira guianensis  Aubl. foram preparados para avaliação de atividades biológicas. Identificação e quantificação de compostos fenólicos, atividade antioxidante, inibição da enzima acetilcolinesterase e potencial antifúngico foram realizados em todos os extratos. Foram detectados teores elevados de fenóis totais nos extratos etanolicos e aquosos das folhas (237,10±5,39 mg EAG/g e 346,46±5,67 mg EAG) respectivamente. Os mesmos extratos apresentavam um potencial de extração de radicais livres tanto pelo método DPPH como pelo método ABTS+. Extrato etanólico das folhas com CI50= 15,06±0,02 µg/mL e 16,49±0,01µg/mL) e extratos aquosos (11,54±0,01 µg/mL e 15,14±0,02 µg/mL respectivamente. No estudo por cromatografia líquida de alta eficiência foram registradas as substâncias fenólicas: ácido gálico, rutina, ácido elágico, quercetina e apigenina nas folhas e ácido gálico e quercetina na casca do caule. Extratos etanólicos e aquosos das folhas e casca do caule mostraram uma elevada potência de inibição da enzima acetilcolinesterase, com valores de CI50 = 13,94±0,02 µg/mL, 13,69±0,08 µg/mL e 14,79±0,20 µg/mL respectivamente. O extrato aquoso das folhas mostrou ação anti-Candida contra as quatro cepas do microrganismo. Os estudos in silico evidenciaram que todos os ligantes analisados apresentaram interação com a proteína SAP5 destacando o ácido elágico, a rutina e a quercetina. Com estes resultados, confirmam-se as atividades anteriormente relatadas para a espécie T. guianensis, destacando-se os extratos polares, principalmente aquosos como fonte de antioxidante, inibidor da acetilcolinesterase e substâncias antifúngicas.

Referências

Ademosun, A. O., Oboh, G., Bello, F., & Ayeni, P. O. (2016). Antioxidative Properties and Effect of Quercetin and Its Glycosylated Form (Rutin) on Acetylcholinesterase and Butyrylcholinesterase Activities. Journal of evidence-based complementary & alternative medicine, 21(4), 11-17. https://doi.org/10.1177/2156587215610032

Antonopoulou, I., Sapountzaki, E., Rova, U., & Christakopoulos, P. (2022). The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines, 10(8), 1787. https://doi.org/10.3390/biomedicines10081787

Araújo, C. R. M., Santos, V. L. dos A., & Arlan, A. G. (2016). Acetilcolinesterase - AChE: Uma Enzima de Interesse Farmacológico. Revista Virtual de Química, 8(6), 1818–1834

Badhani, B., Sharma, N., & Kakkar, R. (2015). Ácido gálico: um antioxidante versátil com aplicações terapêuticas e industriais promissoras. Rsc Advances, 5 (35), 27540-27557. https://doi.org/10.1039/C5RA01911G

Barbosa, F. G., Lima, M. A. S.., Braz-Filho, R., & Silveira, E R. (2006). Glicosídeos iridóides e feniletanoides de Lippia alba. Biochemical Systematics and Ecology, 11 (34), 819-821. https://doi.org/10.1016/j.bse.2006.06.006

Becker, M., Nunes, G., Ribeiro, D., Silva, F., Catanante, G., & Marty, J. (2019). Determination of the Antioxidant Capacity of Red Fruits by Miniaturized Spectrophotometry Assays. Journal of the Brazilian Chemical Society, 3(4), 223–227. https://doi.org/10.21577/0103-5053.20190003

Biovia, D. S., Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Richmond, T. J. (2000). Dassault Systèmes BIOVIA, Discovery Studio Visualizer. The Journal of Chemical Physics, 17(2).

Borelli, C., Ruge, E., Lee, J. H., Schaller, M., Vogelsang, A., Monod, M., & Maskos, K. (2008). X‐ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins: Structure, Function, and Bioinformatics, 72(4), 1308-1319. https://doi.org/10.1002/prot.22021

Bors, W., & Saran, M. (1987). Radical scavenging by flavonoid antioxidants. Free radical research communications, 2(4-6), 289-294. https://doi.org/10.3109/10715768709065294

Clinical and Laboratory Standards Institute (CLSI, formerly National Commitee for Clinical and Laboratory Standards NCCLS) (2018). Method M-38ª, (2ª ed), Wayne, Ed.; NCCLS Pennsylvania, 22 (16) 1-27

Correia, S. D. J., DavidI, J. M., Silva, E. P. D., David, J. P., Lopes, L. M., & Guedes, M. L. S. (2008). Flavonóides, norisoprenóides e outros terpenos das folhas de Tapirira guianensis . Química Nova, 31, 2056-2059. https://doi.org/10.1590/S0100-40422008000800027

Csizmadia, P. (1999) In Proceedings of The 3rd International Electronic Conference on Synthetic Organic Chemistry; MDPI: Basel, Switzerland, 1775.

da Silva, C. R., Moura, F. L. D., Alves Filho, A. L. A., de Sousa Campos, R., de Farias Cabral, V. P., Sá, L. G. D. A. V., & Neto, J. B. D. A. (2022). Evaluation of interactions of silibinin with the proteins ALS3 and SAP5 against Candida albicans. Journal of Health & Biological Sciences, 10(1), 1-6. http://dx.doi.org/10.12662/2317-3076jhbs.v10i1.4239.p1-6.2022

da Silva, L. J., Barroso, F. D. D., Vieira, L. S., Mota, D. R. C., da Silva Firmino, B. K., da Silva, C. R., & de Andrade Neto, J. B. (2021). Diazepam’s antifungal activity in fluconazole-resistant Candida spp. and biofilm inhibition in C. albicans: evaluation of the relationship with the proteins ALS3 and SAP5. Journal of Medical Microbiology, 70(3), 001308. https://doi.org/10.1099/jmm.0.001308

D'Andrea, G. (2015). Quercetin: a flavonol with multifaceted therapeutic applications?. Fitoterapia, 106, 256-271. https://doi.org/10.1016/j.fitote.2015.09.018

David, J. M., Chávez, J. P., Chai, H. B., Pezzuto, J. M., & Cordell, G. A. (1998). Two new cytotoxic compounds from Tapirira guianensis . Journal of natural products, 61(2), 287-289. https://doi.org/10.1021/np970422v

de Andrade Neto, J. B., de Farias Cabral, V. P., Nogueira, L. F. B., da Silva, C. R., Sa, L. G. D. A. V., da Silva, A. R., & Júnior, H. V. N. (2021). Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microbial pathogenesis, 155, 104892. https://doi.org/10.1016/j.micpath.2021.104892

de Morais, S. M., da Silva Lopes, F. F., Fontenele, G. A., da Silva, M. V. F., Fernandes, V. B., & Alves, D. R. (2021). Total phenolic content and antioxidant and anticholinesterase activities of medicinal plants from the State’s Cocó Park (Fortaleza-CE, Brazil). Research, Society and Development, 10(5), e7510514493-e7510514493. https://doi.org/10.33448/rsd-v10i5.14493

Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutrition research reviews, 13(1), 79-106. https://doi.org/10.1079/095442200108729016

Ekambaram, S. P., Perumal, S. S., & Balakrishnan, A.(2016). Phytotherapy research 30, 1035. https://doi.org/10.1002/ptr.5616

Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Fontenelle, R. O. S., Morais, S. M., Brito, E. H. S., Kerntopf, M. R., Brilhante, R. S. N., Cordeiro, R. A., & Rocha, M. F. G. (2007). Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. Journal of Antimicrobial Chemotherapy, 59(5), 934-940. https://doi.org/10.1093/jac/dkm066

Frota, L. S., Lopes, F. F. S., Alves, D. R., Freitas, L. S., Franco, G. M. G., & Morais, S. M. de. (2021). Composição química e avaliação das atividades antioxidante e anticolinesterásica do óleo dos frutos de Ouratea fieldingiana (Gargner) Engl. Research, Society and Development, 10(10), e532101019013. https://doi.org/10.33448/rsd-v10i10.19013

Funari, C. S., & Ferro, V. O. (2006). Análise de própolis. Food Science and Technology, 26, 171-178. https://doi.org/10.1590/S0101-20612006000100028

Gupta, A., Kumar, R., Ganguly, R., Singh, A. K., Rana, H. K., & Pandey, A. K. (2021). Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. Toxicology reports, 8, 44-52. https://doi.org/10.1016/j.toxrep.2020.12.010

Halgren, T. A. (1996). Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry, 17(5–6), 520–552. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17

Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.

Imani, A., Maleki, N., Bohlouli, S., Kouhsoltani, M., Sharifi, S., & Maleki Dizaj, S. (2021). Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research, 35(5), 2500-2513. https://doi.org/10.1002/ptr.6977

Imberty, A., Hardman, K. D., Carver, J. P., & Perez, S. (1991). Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology, 1(6), 631-642. https://doi.org/10.1093/glycob/1.6.631

Ivanov, M., Kannan, A., Stojković, D. S., Glamočlija, J., Calhelha, R. C., Ferreira, I. C., & Soković, M. (2020). Flavones, flavonols, and glycosylated derivatives impact on Candida albicans growth and virulence, expression of cdr1 and erg11, cytotoxicity. Pharmaceuticals, 14(1), 27. https://doi.org/10.3390/ph14010027

Janeczko, M., Gmur, D., Kochanowicz, E., Górka, K., & Skrzypek, T. (2022). Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biology, 126(6-7), 407-420. https://doi.org/10.1016/j.funbio.2022.05.002

Kim, G. H., Kim, J. E., Rhie, S. J., & Yoon, S. (2015). The role of oxidative stress in neurodegenerative diseases. Experimental neurobiology, 24(4), 325.

Kwun, M. S., & Lee, D. G. (2020). Quercetin-induced yeast apoptosis through mitochondrial dysfunction under the accumulation of magnesium in Candida albicans. Fungal biology, 124(2), 83-90. https://doi.org/10.1016/j.funbio.2019.11.009

Li, Z. J., Liu, M., Dawuti, G., Dou, Q., Ma, Y., Liu, H. G., & Aibai, S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy research, 31(7), 1039-1045. https://doi.org/10.1002/ptr.5823

Marinho, E. M., de Andrade Neto, J. B., Silva, J., da Silva, C. R., Cavalcanti, B. C., Marinho, E. S., & Júnior, H. V. N. (2020). Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microbial Pathogenesis, 148, 104365. https://doi.org/10.1016/j.micpath.2020.104365

Meenambiga, S. S., Venkataraghavan, R., & Biswal, R. A. (2018). In silico analysis of plant phytochemicals against secreted aspartic proteinase enzyme of Candida albicans. Journal of Applied Pharmaceutical Science, 8(11), 140-150.

Naves, P. L. F., Santana, D. P., Ribeiro, E. L., & Menezes, A. C. S. (2013). Novas abordagens sobre os fatores de virulência de Candida albicans. Revista de Ciências Médicas e Biológicas, 12(2), 229-233. https://doi.org/10.9771/cmbio.v12i2.6953

Neves, A. M., Morais, S. M. D., Santos, H. S. D., Ferreira, M. M., Cruz, R. C. V., Souza, E. B. D., & Fontenelle, R. O. D. S. (2022). Prospecção química, atividade antioxidante, anticolinesterásica e antifúngica de extratos etanólicos de espécies de Senna Mill.(Fabaceae). Hoehnea, 49. https://doi.org/10.1590/2236-8906-111/2020

Ngameni, B., Fotso, G. W., Kamga, J., Ambassa, P., Abdou, T., Fankam, A. G., & Kuete, V. (2013). Flavonoids and Related Compounds from the Medicinal Plants of Africa. In Medicinal Plant Research in Africa (pp. 301–350). Elsevier. https://doi.org/10.1016/B978-0-12-405927-6.00009-6

Ohno, Y., Fukuda, K., Takemura, G., Toyota, M., Watanabe, M., Yasuda, N., & Fujiwara, H. (1999). Induction of apoptosis by gallic acid in lung cancer cells. Anti-cancer drugs, 10(9), 845-851. https://doi.org/10.1097/00001813-199910000-00008

Patient, A., Jean-Marie, E., Robinson, J. C., Martial, K., Meudec, E., Levalois-Grützmacher, J., & Bereau, D. (2022). Polyphenol Composition and Antioxidant Activity of Tapirira guianensis Aubl.(Anarcadiaceae) Leaves. Plants, 11(3), 326. https://doi.org/10.3390/plants11030326

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084

Raina, K., Rajamanickam, S., Deep, G., Singh, M., Agarwal, R., & Agarwal, C. (2008). Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Molecular cancer therapeutics, 7(5), 1258-1267. https://doi.org/10.1158/1535-7163.MCT-07-2220

Rao, A. S., & Camilleri, M. (2010). metoclopramide and tardive dyskinesia. Alimentary pharmacology & therapeutics, 31(1), 11-19. https://doi.org/10.1111/j.1365-2036.2009.04189.x

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Ren, L., Zhang, J., & Zhang, T. (2021). Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chemistry, 340, 127933. https://doi.org/10.1016/j.foodchem.2020.127933

Rodrigues, A. M., Guimarães, D. O., Konno, T. U., Tinoco, L. W., Barth, T., Aguiar, F. A., & Muzitano, M. F. (2017). Phytochemical study of Tapirira guianensis leaves guided by vasodilatory and antioxidant activities. Molecules, 22(2), 304. https://doi.org/10.3390/molecules22020304

Roumy, V., Fabre, N., Portet, B., Bourdy, G., Acebey, L., Vigor, C., & Moulis, C. (2009). Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis . Phytochemistry, 70(2), 305-311. https://doi.org/10.1016/j.phytochem.2008.10.003

Santos, T. C. D., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & Paes, A. M. D. A. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Frontiers in Pharmacology, 9, 1192. https://doi.org/10.3389/fphar.2018.01192

Schelenz, S. (2008). Management of candidiasis in the intensive care unit. Journal of Antimicrobial Chemotherapy, 61(suppl_1), i31-i34.

Schrödinger, L. L. C. The PyMOL Molecular Graphics System, Version 2.3. 2019. Google Scholar There is no corresponding record for this reference.

Seleem, D., Pardi, V., & Murata, R. M. (2017). Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Archives of oral biology, 76, 76-83. https://doi.org/10.1016/j.archoralbio.2016.08.030

Sharma, A., Kashyap, D., Sak, K., Tuli, H. S., & Sharma, A. K. (2018). Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharmaceutical patent analyst, 7(1), 15-32. https://doi.org/10.4155/ppa-2017-0030

Shityakov, S., & Förster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and applications in bioinformatics and chemistry: AABC, 7, 23. https://doi.org/10.2147/AABC.S63749

Silva, E. P. D., David, J. M., David, J. P., Garcia, G. H. T., & Silva, M. T. (2020). Chemical composition of biological active extracts of Tapirira guianensis (Anacardiaceae). Química Nova, 43, 1216-1219. https://doi.org/10.21577/0100-4042.20170605

Silva, J., Rocha, M. N., & Marinho, E. M. (2021). Evaluation of the ADME, toxicological analysis and molecular docking studies of the anacardic acid derivatives with potential antibacterial effects against staphylococcus aureus. J Anal Pharm Res, 10(5), 177-194. https://doi.org/10.15406/japlr.2021.10.00384

Silva-Oliveira, R. J., Lopes, G. F., Camargos, L. F., Ribeiro, A. M., Santos, F. V. D., Severino, R. P., & Ribeiro, R. I. M. D. A. (2016). Tapirira guianensis Aubl. extracts inhibit proliferation and migration of oral cancer cells lines. International journal of molecular sciences, 17(11), 1839. https://doi.org/10.3390/ijms17111839

Singh, D., Khan, M. A., Akhtar, K., Arjmand, F., & Siddique, H. R. (2022). Apigenin alleviates cancer drug Sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress. Toxicology and Applied Pharmacology, 447, 116072. https://doi.org/10.1016/j.taap.2022.116072

Smiljkovic, M., Stanisavljevic, D., Stojkovic, D., Petrovic, I., Vicentic, J. M., Popovic, J., & Sokovic, M. (2017). Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI journal, 16, 795. https://doi.org/10.17179/excli2017-300

Sousa, C. M. D. M., Silva, H. R., Ayres, M. C. C., Costa, C. L. S. D., Araújo, D. S., Cavalcante, L. C. D., & Chaves, M. H. (2007). Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química nova, 30, 351-355. https://doi.org/10.1590/S0100-40422007000200021

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

Trubiano, J. A., & Padiglione, A. A. (2015). Nosocomial infections in the intensive care unit. Anaesthesia & Intensive Care Medicine, 16(12), 598-602.

Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., & Gao, Y. (2016). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 56, 21-38. https://doi.org/10.1016/j.tifs.2016.07.004

Yan, J., Zhang, G., Pan, J., & Wang, Y. (2014). α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. International journal of biological macromolecules, 64, 213-223. https://doi.org/10.1016/j.ijbiomac.2013.12.007

Yan, X., Qi, M., Li, P., Zhan, Y., & Shao, H. (2017). Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell & Bioscience, 7(1), 1-16. https://doi.org/10.1186/s13578-017-0179-x

Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT-Food Science and Technology, 41(6), 1060-1066. https://doi.org/10.1016/j.lwt.2007.06.010

Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of chemical information and modeling, 48(7), 1411-1422. https://doi.org/10.1021/ci800084x

Zhang, T., Zhong, S., Li, T., & Zhang, J. (2020). Saponins as modulators of nuclear receptors. Critical reviews in food science and nutrition, 60(1), 94-107. https://doi.org/10.1080/10408398.2018.1514580

Downloads

Publicado

08/10/2022

Como Citar

OLIVEIRA, D. P. de .; MORAIS, S. M. de .; LOPES, F. F. da S. .; ALVES, D. R. .; GARCEZ NETO, J. R. .; FONTENELLE, R. O. dos S. .; PRADO, J. C. S. .; MARINHO, E. da S. .; MARINHO, M. M. .; BEZERRA, L. L. . Avaliação do perfil fenólico e do potencial antioxidante, anticolinesterase e anti-candida in vitro e in silico de extratos de Tapirira guianensis Aubl. Research, Society and Development, [S. l.], v. 11, n. 13, p. e317111335378, 2022. DOI: 10.33448/rsd-v11i13.35378. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35378. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Exatas e da Terra