Patogênese e perspectivas de tratamento da Covid-19: uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v9i7.3730

Palavras-chave:

Patogênese; Tratamento farmacológico; Coronavírus.

Resumo

Objetivo: apresentar a forma de ação e interação do SARS-CoV-2 com as células humanas e descrever os principais estudos sobre o tratamento para a Covid-19. Metodologia: foi realizada uma revisão nas bases de dados Science Direct-Elsevier e PubMed com análise de trabalhos experimentais in vitro e in vivo, de revisão, de notas técnicas e registros de pesquisas clínicas. Os termos utilizados foram: Coronavírus, COVID-19, SARS-CoV-2 associadas com pathogenesis, clinical studies e treatment. Resultados: Muitos estudos estão em desenvolvimento para entender a patogênese do vírus e buscar terapias eficientes para conter a COVID-19, como a cloroquina, hidroxicloroquina, Arbidol, favipiravir, remdesivir, entre outros. Conclusão: Este artigo revisou mecanismos de ação do SARS-CoV-2 a fim de fornecer informações para o melhor entendimento das ações adotadas por diversos pesquisadores na terapia contra a COVID-19. Muitos medicamentos estão em fases clínicas de experimentação para saber se podem minimizar os graves efeitos do vírus na população.

Biografia do Autor

Marcos Roberto Nascimento Sousa, Cristo Faculdade do Piauí

Curso de Enfermagem da Cristo Faculdade do Piauí

Sabrina Sousa Barros, Cristo Faculdade do Piauí

Curso de Enfermagem da Cristo Faculdade do Piauí

Marcelo Silva, Cristo Faculdade do Piauí

Curso de Enfermagem da Cristo Faculdade do Piauí

Ana Paula Melo Oliveira, Cristo Faculdade do Piauí

Curso de Enfermagem da Cristo Faculdade do Piauí

Gabriel Mauriz Rocha, Cristo Faculdade do Piauí

Professor do Curso de Fisioterapiada Cristo Faculdade do Piauí

Guilherme Antonio Lopes Oliveira, Cristo Faculdade do Piauí

Professor do Curso de Enfermagem da Cristo Faculdade do Piauí

Referências

Casadevall, A., & Pirofski, L. (2020). The convalescent sera option for containing COVID-19. The Journal of Clinical Investigation, 130 (4), 1545-1548.

Catella-Lawson, F. et al. (2001). Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. New England Journal of Medicine, 345 (25), 1809-1817.

Chen, C.et al. (2020). Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. MedRxiv, 3 (17), e20037432

Chen, J. (2020). Pathogenicity and transmissibility of SARS-CoV-2 quick overview and comparison with other emerging viruses. Microbes and Infection, 22 (2), 69-71.

Chen, N. et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395 (10223), 507-513.

Colson, P. et al. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 5 (41), e105932.

Dong, L., Hu, S., & Gao, J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics, 14 (1), 58-60.

Elfiky, A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 2020.

Fitzgerald, G. A. (2020). Misguided drug advice for COVID-19, Science, 367 (6485) e1434.

Fung, S.et al. (2020). A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defense: lessons from other pathogenic viruses. Emerging Microbes & Infections, 9 (1), 558-570.

Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends, 14 (1), 72-73.

Gautret, P. et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, e105949.

Han, Y., & Yang, H. (2020). The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID‐19): A Chinese perspective. Journal of Medical Virology, 1-6.

Hilgenfeld, R. (2014). From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design, The FEBS journal, 281 (18), 4085-4096.

Holshue, M. L. et al. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine, 382 (10), 929-936.

Huang C. et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 15 (395), 497-506.

Khan, S. et al. (2020). The emergence of a novel coronavirus (SARS-CoV-2), their biology and therapeutic options. Journal of Clinical Microbiology.

Li, Q. et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382 (13), 1199-1207.

Liu, C. et al. (2020). Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science, 6 (3), 315-331.

Liu, J. et al. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6 (1), 1-4.

Liu, J. et al. (2020). Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV. Journal of Medical Virology, 92 (5), 491-494.

Lu, R. et al. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 95 (10224), 565-574.

Savarino, A., Boelaert, J.R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: an old drug against today's diseases? The Lancet Infectious Diseases, 3 (11), 722-727.

Sheahan, T. P. et al. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11 (1), 1-14.

Shereen, M. A. et al. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91-98.

Singh, A. K. et al. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (3), 241-246.

Wang, M. et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (SARS-CoV-2) in vitro. Cell research, 30 (3), 269-271.

Wang, W., Tang, J., & Wei, F. (2020). Updated understanding of the outbreak of 2019 novel coronavirus (SARS-CoV-2) in Wuhan, China. Journal of Medical Virology, 92 (4), 441-447.

Zhan, L. et al. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, eabb3405.

Zhang, W. (2020). The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clinical Immunology, 214, e108393.

Downloads

Publicado

25/04/2020

Como Citar

SOUSA, M. R. N.; BARROS, S. S.; SILVA, M.; OLIVEIRA, A. P. M.; ROCHA, G. M.; OLIVEIRA, G. A. L. Patogênese e perspectivas de tratamento da Covid-19: uma revisão. Research, Society and Development, [S. l.], v. 9, n. 7, p. e05973730, 2020. DOI: 10.33448/rsd-v9i7.3730. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3730. Acesso em: 5 jan. 2025.

Edição

Seção

Artigos de Revisão