Um estudo sobre a variação dos coeficientes de uma função quadrática no ambiente do software geogebra
DOI:
https://doi.org/10.33448/rsd-v9i7.3742Palavras-chave:
Funções quadráticas; Software Geogebra; Matemática; Variação dos coeficientes.Resumo
Este trabalho tem o objetivo de analisar o comportamento do gráfico de uma função quadrática, com a variação dos seus coeficientes, interpretando as relações estabelecidas entre suas representações algébricas e gráficas, utilizando para isso o ambiente do software geogebra. O procedimento metodológico contou com a exploração e investigação das funções quadráticas com a utilização das ferramentas do software geogebra, para a análise do comportamento do gráfico desta função em decorrência das variações nos valores de seus coeficientes. Nas análises estudamos os pontos notáveis da função quadrática, fazendo a identificação das suas raízes e do vértice da parábola. Também procedemos com as análises da variação de cada coeficiente da função de modo individual, finalizando com a análise da variação do discriminante da função quadrática. Concluímos que, com a utilização adequada das ferramentas do software geogebra, e graças ao seu ao aspecto dinâmico, é possível identificarmos e interpretarmos de modo mais eficiente as relações existentes entre as representações algébricas e gráficas desta função.
Referências
Barreto, A. L. O. (2009). A análise da compreensão do conceito de funções mediado por ambientes computacionais. (Tese de Doutorado) Faculdade de Educação, Universidade Federal do Ceará - UFC, Fortaleza.
Borba, M. C., & Penteado, M. G. (2001). Informática e Educação Matemática: Coleção Tendências em Educação Matemática. 2. ed. Belo Horizonte: Autêntica.
Brasil (2016). Ministério da Educação - MEC. Base Nacional Comum Curricular - BNCC. Proposta Preliminar – 2ª Versão. Brasília: MEC/SEF.
Brasil (2006). Ministério da Educação - MEC. Orientações curriculares para o ensino médio: Ciências da natureza, matemática e suas tecnologias. v. 2. Brasília: Secretaria de Educação Média e Tecnológica - SEMTEC.
Cruz, M. M., & Pontello, L. S. (2008, julho). Utilizando Software Matemático como mediador do Ensino de Gráficos de Funções Quadráticas. Anais da III Jornada Cearense de Educação Matemática – III JCEM, 2008, Fortaleza: IFCE, p. 257-281.
D’Ambrosio, U. (1999). Uma análise dos Parâmetros Curriculares em Matemática. Educação Matemática em Revista. São Paulo, n. 7, ano 6.
Gil, A. C. (2011). Métodos e Técnicas de Pesquisa Social. 6. ed. São Paulo: Atlas.
Hohenwarter, M., & Hohenwarter, J. (2009). Ajuda GeoGebra: Manual oficial da versão 3.2. Traduzido para português de Portugal por Antonio Ribeiro. Lisboa. Recuperado de: https://app.geogebra.org/help/docupt_PT.pdf
Iezzi, G. et al. (2000). Fundamento de Matemática Elementar: conjuntos e funções. v. 1, 3. ed. São Paulo: Atual.
Lima, E. L. et al. (2006). A Matemática do Ensino Médio - vol. 1. 6. ed. Coleção do Professor de Matemática. Rio de Janeiro: Sociedade Brasileira de Matemática – SBM.
Macêdo, J. A. de, Santos, A. C. L. dos, & Lopes, L. R. P. (2020). Contribuições do uso do software GeoGebra no estudo da derivada. Research, Society and Development, Itabira, v. 9, n. 3, p. e156932611, mar. 2020. Recuperado de: https://rsd.unifei.edu.br/index.php/rsd/article/ view/2611/2030
Pais, L. C. (2010). Educação Escolar e as Tecnologias da Informática. Belo Horizonte: Autêntica.
Prodanov, C. C., & Freitas, E. C. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. 2. ed. Novo Hamburgo: Feevale. Recuperado de: http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book%20 Metodologia%20do%20Trabalho%20 Cientifico.pdf
Sancho, J. M. (2006). De Tecnologias da Informação e Comunicação a Recursos Educativos. In: Sancho, J. M., & Hernandez, F. (Orgs.). Tecnologias para Transformar a Educação. (1a ed., Cap. 1, pp. 17-38). Porto alegre: Artmed.
Smole, K. S., & Diniz, M. I. (2013). Matemática: Ensino Médio. v. 1. 8. ed. São Paulo: Saraiva.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.