Cálculo diferencial e integral: da sequência fedathi ao pensamento matemático avançado
DOI:
https://doi.org/10.33448/rsd-v9i7.3869Palavras-chave:
Derivadas; Ensino de cálculo; Integrais; Pensamento matemático avançado; Sequência fedathiResumo
O objetivo deste artigo é apresentar uma pesquisa voltada para o ensino de Cálculo, motivada pelas dificuldades mostradas pelos estudantes especialmente nos conteúdos de Derivadas e Integrais. Busca-se, portanto, entender se a utilização da metodologia de ensino Sequência Fedathi (SF) por parte dos docentes pode desenvolver aspectos do Pensamento Matemático Avançado (PMA) na construção de raciocínio por parte dos discentes. A metodologia se deu com uma inicial revisão de literatura seguido de um estudo de caso tendo como sujeitos os alunos de um grupo de estudos da Universidade Estadual Vale do Acaraú e para análise dos resultados foram observadas as categorias da Teoria Cognitiva PMA elencadas no desenvolvimento da pesquisa. Os resultados apresentaram que a mudança de postura docente suscitou outras demandas discentes que foram perceptíveis no trabalho matemático apresentado durante as atividades realizadas.
Referências
Andrade, WE et al. (2019). A metodologia sequência fedathi no processo de formação docente, de ensino e de aprendizagem de matemática: uma revisão integrativa. Brazilian Jornal of Development, 5(12), 29858-29869. doi:https://doi.org/10.34117/bjdv5n12-126
Baldino, RR. (1998). Desenvolvimento de Essências de Cálculo Infinitesimal. Rio de Janeiro: MEM/USU.
Barbosa, GO & Borges Neto, H. (1994). Raciocínio lógico formal e aprendizagem em cálculo diferencial e integral: o caso da Universidade Federal do Ceará. Dissertação -Universidade Federal do Ceará (Faculdade de Educação) Departamento de Estudos Especializados, Fortaleza.
Bezerra, AMA. (2018). O Plateau como elemento de reflexão e melhoria das práticas escolares. Curitiba: Crv.
Cardoso, RPL. (2015). MASF: Modelo de Referência para aplicação da Sequência Fedathi na formação profissional e na produção de conteúdo. Tese (Doutorado) –Universidade Federal do Ceará (Faculdade de Educação) Programa de Pós-Graduação em Educação Brasileira, Fortaleza.
Cury, HN & Cassol, M. (2004). Análise de erro em Cálculo: uma pesquisa para embasar mudanças. Acta Scientiae, 6(1), 27-36. Retirado de http://www.periodicos.ulbra.br/index.php/acta/article/view/128/116
Domingos, A. (2006). Teorias cognitivas e aprendizagem de conceitos matemáticos avançados. In: Seminário de Investigação em Educação Matemática, 17, Actas, 17, 51-81. Retirado de https://www.researchgate.net/publication/267806630
Fontenele, FCF. (2013). A sequência fedathi no ensino da álgebra linear: o caso da noção de base de um espaço vetorial. Dissertação (Mestrado em Educação) – Faculdade de Educação, Universidade Federal do Ceará, Fortaleza.
Menezes, DB. (2018). O Ensino do Cálculo Diferencial e Integral na Perspectiva da Sequência Fedathi: Caracterização da Mediação de um Bom Professor. Tese (Doutorado) – Programa de Pós-Graduação em Educação Brasileira. Universidade Federal do Ceará, Fortaleza.
Pereira, AS, Shitsuka, DM, Parreira, FJ & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Souza, MJA. (2010) Aplicações da Sequência Fedathi no ensino e aprendizagem da Geometria mediada por tecnologias digitais. Tese (Doutorado em Educação) – Faculdade de Educação, Universidade Federal do Ceará, Fortaleza.
Souza, FEE et al. (2013) Sequência Fedathi: uma proposta pedagógica para o ensino de ciências e matemática. Fortaleza: edições UFC.
Silva, BA. (2008) Contrato Didático. In: Sílvia Dias Alcântara Machado. (Org.). Educação Matemática: Uma (nova) introdução. 3ª ed. São Paulo: EDUC.
Tall, D. (1995) Cognitive growth in elementary and advanced mathematical thinking. Proceedings of 19th International Conference for the Psychology of Mathematics Education, 1, 61-75. Retirado de http://citeseerx.ist.psu.edu/viewdoc/download
Tall, D. (1991) The psychology of advanced mathematical thinking. In: Tall, David (Org.). Advanced Mathematical Thinking. (pp.3-21) Dordrecht: Kluwer Academic Publishers.
Tall, D & Vinner, S. (1981) Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics. University of Warwick. 12 (7), 151-169. doi:10.1007/BF00305619
Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Education in Science and Technology, 14, 293-305. https://doi.org/10.1080/0020739830140305
Vinner, S. (1991) The Role of Definitions in Teaching and Learning. In: Tall, David (Org.). Advanced Mathematical Thinking. (pp. 65-81) Dordrecht: Kluwer Academic Publishers.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.