Tribulus terrestris fruit preparations impact HPLC chemical profiles and antioxidant, lipoxygenase and α-glucosidase inhibitory activities
DOI:
https://doi.org/10.33448/rsd-v11i17.38751Palavras-chave:
Zygophyllaceae; Extratos vegetais; Teores de fenólicos totais; CLAE.Resumo
O fruto do Tribulus terrestris tem sido utilizado como medicamento tradicional e popular para a prevenção e tratamento de diversas doenças, incluindo disfunção sexual, aterosclerose e hipertensão. O objetivo deste estudo foi avaliar as atividades antioxidante, inibitória da lipoxigenase e da α-glicosidase de um extrato etanólico de T. terrestris brasileiro e suas frações sequencialmente particionadas em n-hexano, diclorometano, acetato de etila e n-butanol. As capacidades antioxidantes foram determinadas por DPPH e ABTS sequestrando radicais livres, quelando íons metálicos, reduzindo o poder e a atividade antioxidante total usando fosfomolibdênio. Análise de impressão digital por Cromatografia Líquida de Alta Eficiência - Detector de arranjo de Diodos (CLAE-DAD) e quantificação de compostos fenólicos totais foram realizadas nas amostras. A fração diclorometano apresentou o perfil químico HPLC-DAD mais complexo. As frações acetato de etila e butanol revelaram a melhor recuperação de compostos fenólicos e flavonoides de T. terrestris. Com relação à atividade antioxidante, a fração acetato de etila apresentou melhor capacidade de sequestro de DPPH, ABTS e radicais hidroxila, poder redutor, capacidade antioxidante total (TAC) e atividade inibitória da α-glicosidase do que as outras frações. Esses resultados correlacionaram-se estreitamente com os níveis de compostos fenólicos e flavonóides. A fração hexânica apresentou o melhor poder quelante de metais e atividade inibitória da lipoxigenase. O potencial antidiabético e antiinflamatório do T. terrestris brasileiro depende do modo de preparo.
Referências
Aazza, S., Lyoussi, B., & Miguel, M. G. (2011). Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 16(9), 7672-7690.
Abdali-Mashhadi, A.-R., Direkvand-Moghadam, F., jalali, M., Albobaji, M., Direkvand-Moghadam, A., & Delpisheh, A. (2016). The measurement of the quercetin of different parts of Tribulus terrestris by HPLC. Future Natural Products, 2(1), 21-26.
Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants, 4(2), 394-409.
Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143-152.
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.
Asadmobini, A., Bakhtiari, M., Khaleghi, S., Esmaeili, F., & Mostafaei, A. (2017). The effect of Tribulus terrestris extract on motility and viability of human sperms after cryopreservation. Cryobiology, 75, 154-159.
Asikin, Y., Takahashi, M., Mizu, M., Takara, K., Oku, H., & Wada, K. (2016). DNA damage protection against free radicals of two antioxidant neolignan glucosides from sugarcane molasses. Journal of the Science of Food and Agriculture, 96(4), 1209-1215.
Basaiyye, S. S., Naoghare, P. K., Kanojiya, S., Bafana, A., Arrigo, P., Krishnamurthi, K., & Sivanesan, S. (2018). Molecular mechanism of apoptosis induction in Jurkat E6-1 cells by Tribulus terrestris alkaloids extract. Journal of Traditional and Complementary Medicine, 8(3), 410-419.
Borran, M., Minaiyan, M., Zolfaghari, B., & Mahzouni, P. (2017). Protective effect of Tribulus terrestris fruit extract on cerulein-induced acute pancreatitis in mice. Avicenna Journal of Phytomedicine (AJP), 7(3), 250-260.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.
Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of food and drug analysis, 10(3), 3.
Choi, C.-I., Eom, H. J., & Kim, K. H. (2016). Antioxidant and α-glucosidase inhibitory phenolic constituents of Lactuca indica L. Russ. J. Bioorganic Chem. , 42(3), 310-315.
Dakshayini, P., & Mahaboob Basha, P. (2018). Tribulus terrestris fruit extract improves antioxidant defense in female reproductive tract: A comprehensive study in diabetic rats. J. Innov. Pharm. Biol. Sci., 5(2), 101-107.
De Combarieu, E., Fuzzati, N., Lovati, M., & Mercalli, E. (2003). Furostanol saponins from Tribulus terrestris. Fitoterapia, 74(6), 583-591.
Dinchev, D., Janda, B., Evstatieva, L., Oleszek, W., Aslani, M. R., & Kostova, I. (2008). Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry, 69(1), 176-186.
Dobrian, A. D., Morris, M. A., Taylor-Fishwick, D. A., Holman, T. R., Imai, Y., Mirmira, R. G., & Nadler, J. L. (2019). Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacology & Therapeutics, 195, 100-110.
Domingueti, C. P., Dusse, L. M. S. A., Carvalho, M. d. G., de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and its Complications, 30(4), 738-745.
Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774.
Dwivedi, D., & Sengar, N. (2018). Investigation of phytochemical constituents from Tribulus terrestris roots, leaves and fruits. Journal of Chemistry and Chemical Sciences, 8(1), 55-58.
Egnell, M., Fassier, P., Lécuyer, L., Gonzalez, R., Zelek, L., Vasson, M.-P., Hercberg, S., Latino-Martel, P., Galan, P., Druesne-Pecollo, N., Deschasaux, M., & Touvier, M. (2017). Antioxidant intake from diet and supplements and risk of digestive cancers in middle-aged adults: results from the prospective nutrinet-santé cohort. British Journal of Nutrition, 118(7), 541-549.
El-Shaibany, A., Molham, A.-H., Al-Tahami, B., & Al-Massarani, S. (2015). Anti-hyperglycaemic activity of Tribulus terrestris L aerial part extract in glucose-loaded normal rabbits. Trop. J. Pharm. Res., 14(12), 2263-2268.
El‐Guendouz, S., Aazza, S., Lyoussi, B., Antunes, M. D., Faleiro, M. L., & Miguel, M. G. (2016). Anti‐acetylcholinesterase, antidiabetic, anti‐inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci., 51(8), 1762-1773.
Ercan, P., & El, S. N. (2016). Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chemistry, 205, 163-169.
Ernawati, T., Radji, M., Hanafi, M., Mun’im, A., & Yanuar, A. (2017). Cinnamic acid derivatives as α-glucosidase inhibitor agents [cinnamic acid derivative; α-glucosidase inhibitor; antidiabetic; synthesis; natural products]. Indones. J. Chem., 17(1), 10.
Frum, Y., & Viljoen, A. M. (2006). In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases. Skin Pharmacol. Physiol., 19(6), 329-335.
Gardner, H. W. (1995). Biological roles and biochemistry of the lipoxygenase pathway. HortScience, 30(2), 197-205.
Ghanbari, A., Moradi, M., Raoofi, A., Falahi, M., & Seydi, S. (2016). Tribulus terrestris hydroalcoholic extract administration effects on reproductive parameters and serum level of glucose in diabetic male rats. International Journal of Morphology, 34(2).
Hammoda, H. M., Ghazy, N. M., Harraz, F. M., Radwan, M. M., ElSohly, M. A., & Abdallah, I. I. (2013). Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 92, 153-159.
Hong, S. S., Choi, Y.-H., Jeong, W., Kwon, J. G., Kim, J. K., Seo, C., Ahn, E.-K., Lee, H. H., Ko, H.-J., Seo, D.-W., & Oh, J. S. (2013). Two new furostanol glycosides from the fruits of Tribulus terrestris. Tetrahedron Lett., 54(30), 3967-3970.
Ivanova, A., Lazarova, I., Mechkarova, P., & Tchorbanov, B. (2010). HPLC method for screening of steroidal saponins and rutin as biologically active compounds in Tribulus Terrestris L. Biotechnol. Biotechnol. Equip., 24(sup1), 129-133.
Kang, S. Y., Jung, H. W., Nam, J. H., Kim, W. K., Kang, J. S., Kim, Y. H., Cho, C. W., Cho, C. W., Park, Y. K., & Bae, H. S. (2017). Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone-induced atopic dermatitis through regulation of calcium channels, orai-1 and TRPV3, and mast cell activation. Evid. Based Complementary Altern. Med., 2017, 8312946.
Keshtmand, Z., Ghanbari, A., Khazaei, M., & Rabzia, A. (2015). Protective effect of Tribulus terrestris hydroalcoholic extract against cisplatin-induced apoptosis on testis in mice. Int. J. Morphol., 33(1).
Khairwal, V., & Kumar, M. (2013). Lead acetate induced oxidative stress and its possible reversal by Tribulus terrestris root extract in testes of Swiss albino mice. J. Environ. Sci. Toxicol. Food Technol., 6(3), 79-85.
Khatri, S., & Chhillar, A. K. (2015). Evaluation of in vitro free radical scavenging activity of Tribulus terrestris. Int. J. Basic Appl. Biol.
Kim, H. S., Lee, J. W., Jang, H., Le, T. P. L., Kim, J. G., Lee, M. S., Hong, J. T., Lee, M. K., & Hwang, B. Y. (2018). Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Arch. Pharm. Res., 41(2), 192-195.
Kostova, I., Dinchev, D., Rentsch, G. H., Dimitrov, V., & Ivanova, A. (2002). Two new sulfated furostanol saponins from Tribulus terrestris. Z. Naturforsch. C. J. Biosci., 57(1-2), 33-38.
Kumari, M., Kumar, P., & Singh, P. (2015). Safety evaluation of Tribulus terrestris on the male reproductive health of laboratory mouse. Int. J. Pharm. Phytopharm. Research, 4(5), 281-287.
Kunchandy, E., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. Int. J. Pharm. , 58(3), 237-240.
Lamba, H., Bhargava, C., Thakur, M., & Bhargava, S. (2011). α-glucosidase and aldose reductase inhibitory activity in vitro and anti-diabetic activity in vivo of Tribulus terrestris L. (Dunal). Int. J. Pharm. Pharm., 3, 270–272.
Lee, H. H., Ahn, E. K., Hong, S. S., & Oh, J. S. (2017). Anti-inflammatory effect of tribulusamide D isolated from Tribulus terrestris in lipopolysaccharide-stimulated RAW264.7 macrophages. Mol. Med. Rep., 16(4), 4421-4428.
Lokhande, K., Kulkarni, C., Shinkar, M., Jadhav, S., & Salunkhe, S. (2014). Evaluation of antioxidant potential of Indian wild leafy vegetable Tribulus terrestris. Int. J. Adv. Pharm. Biol. Chem., 3, 2277-4688.
Nebieridze, V. G., Skhirtladze, A. V., Kemertelidze, E. P., & Ganzera, M. (2018). Megastigmane glycosides from leaves of Tribulus terrestris. Chem. Nat. Compd., 54(1), 63-65.
Nelson, M. J., & Seitz, S. P. (1994). The structure and function of lipoxygenase. Curr. Opin. Struct. Biol., 4(6), 878-884.
Oliveira, N. N. P. M., Félix, M. A. R., Pereira, T. C. S., Rocha, L. G. P., Miranda, J. R., Zangeronimo, M. G., Pinto, J. E. B. P., Bertolucci, S. K. V., & Sousa, R. V. d. (2015). Sperm quality and testicular histomorphometry of wistar rats supplemented with extract and fractions of fruit of Tribulus terrestris L. Braz. Arch. Biol. Technol., 58, 891-897.
Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.
Pappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019). Diabesity and antidiabetic drugs. Molecular Aspects of Medicine, 66, 3-12.
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.
Rajendar, B., Bharavi, K., Rao, G., Kishore, P., Kumar, P. R., Kumar, C. S., & Patel, T. P. (2011). Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage. Indian journal of pharmacology, 43(5), 568.
Rajendrabhai, V. D. (2017). Detection of phytochemical and pharmacological properties of crude extracts of Tribulus terrestris collected from tribal regions of Baglan (MS), India. Int J Pharmacognosy Phytochem Res, 9(4), 508-511.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.
Samani, N. B., Jokar, A., Soveid, M., Heydari, M., & Mosavat, S. H. (2016). Efficacy of the hydroalcoholic extract of Tribulus terrestris on the serum glucose and lipid Profile of women with diabetes mellitus: a double-blind randomized placebo-controlled clinical trial. Journal of Evidence-Based Complementary & Alternative Medicine, 21(4), NP91-NP97.
Sannigrahi, S., Mazuder, U. K., Pal, D. K., Parida, S., & Jain, S. (2010). Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iranian journal of pharmaceutical research: IJPR, 9(1), 75.
Sarma, A. D., Mallick, A. R., & Ghosh, A. (2010). Free radicals and their role in different clinical conditions: an overview. International Journal of Pharma Sciences and Research, 1(3), 185-192.
Semerdjieva, I. B., & Zheljazkov, V. D. (2019). Chemical constituents, biological properties, and uses of Tribulus terrestris: a review. Natural Product Communications, 14(8), 1934578X19868394.
Shishovska, M., Arsova-Sarafinovska, Z., & Memeti, S. (2015). A simple method for determination of protodioscin in Tribulus terrestris L. and pharmaceuticals by high-performance liquid chromatography using diode-array detection. J. Chem. Eng. Res. Updates, 2, 12-21.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144-158.
Song, Y. H., Kim, D. W., Curtis-Long, M. J., Park, C., Son, M., Kim, J. Y., Yuk, H. J., Lee, K. W., & Park, K. H. (2016). Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur. J. Med. Chem., 114, 201-208.
Wang, B.-J., Lien, Y.-H., & Yu, Z.-R. (2004). Supercritical fluid extractive fractionation – study of the antioxidant activities of propolis. Food Chemistry, 86(2), 237-243.
Wu, T.-S., Shi, L.-S., & Kuo, S.-C. (1999). Alkaloids and other constituents from Tribulus terrestris. Phytochemistry, 50(8), 1411-1415.
Zheleva-Dimitrova, D. Z., Obreshkova, D., & Nedialkov, P. T. (2012). Antioxidant activity of Tribulus terrestris - a natural product in infertility therapy.
Zheng, W., Wang, F., Zhao, Y., Sun, X., Kang, L., Fan, Z., Qiao, L., Yan, R., Liu, S., & Ma, B. (2017). Rapid characterization of constituents in Tribulus terrestris from different habitats by UHPLC/Q-TOF MS. J. Am. Soc. Mass Spectrom., 28(11), 2302-2318.
Zhu, W., Du, Y., Meng, H., Dong, Y., & Li, L. (2017). A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem. Cent. J., 11(1), 60.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Nelma Neylanne Pinho Muniz Oliveira; Aline Carvalho Pereira; Smail Aazza; Carolina Mesquita Germano; Rafael Marlon Alves de Assis; Simony Carvalho Mendonça; Alexandre Alves de Carvalho; José Eduardo Brasil Pereira Pinto; Suzan Kelly Vilela Bertolucci
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.