Perfil químico de polpa de Eugenia brasiliensis (Grumixama) por paper spray PS/MS e microextração em fase sólida SPME-GC/MS
DOI:
https://doi.org/10.33448/rsd-v9i7.4008Palavras-chave:
Myrtaceae; Compostos orgânicos voláteis; Atividade antioxidante; Cereja brasileira.Resumo
A Eugenia brasiliensis conhecida como grumixama é um fruto nativo da biodiversidade brasileira e, ela possui sabor e aroma característicos, compostos bioativos com propriedades antioxidantes e características benéficas para a saúde. Considerando que o mercado consumidor visa à procura de produtos com apelo natural e funcional, este estudo teve como objetivo caracterizar a polpa de grumixama, avaliar o potencial antioxidante e traçar o perfil químico e de compostos orgânicos voláteis deste fruto. Para isto foram realizadas análises de acidez titulável, pH, umidade, proteínas, cinzas, fibras, açucares totais e lipídeos. A determinação dos compostos fenólicos totais foi realizada pelo método do Folin-Ciocalteu e a atividade antioxidante utilizou teste com o radical ABTS. A caracterização do perfil químico consistiu na obtenção de fingerprints empregando-se o Paper spray PS/MS e a extração dos compostos orgânicos voláteis por meio de microextração em fase sólida (SPME) utilizando fibra PDMS/DVB e posterior separação e identificação por CG-MS. A polpa de grumixama destacou-se pela acidez e elevado teor de fibras (20,34 g/100 g de polpa), além de apresentar teores médios de compostos fenólicos totais (173,85 ± 3,21 mg/100 g de polpa) e atividade antioxidante (844,86 ± 2,03 mM/100 g de polpa). Em relação ao perfil químico da polpa foram listados por PS/MS 45 compostos, destacando-se os flavonoides, compostos fenólicos, carotenoides, açúcares, catequina e derivados da quercetina. Foram identificados 19 compostos voláteis orgânicos todos eles pertencentes à classe dos terpenos, sendo 94,7% sesquiterpenos e 5,3% monoterpenos, compostos estes que são responsáveis por diversas características sensoriais dos frutos. Os resultados demonstraram que a associação entre a atividade antioxidante promovida pelos bioativos e os COVs da polpa da grumixama tornam este fruto promissor para aceitação no mercado podendo ser adicionada em diversos produtos aumentando seu valor nutricional e funcional.
Referências
Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D., & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chemistry, 166, 179–191. https://doi.org/10.1016/j.foodchem.2014.06.011
Aghera, P. R., & Bhatt, N. S. (2019). Citric Acid: Biosynthesis, Properties and Application. LAP LAMBERT Academic Publishing. https://www.researchgate.net/publication/335397181_Citric_Acid_Biosynthesis_Properties_and_Application
Aguilera-Ortíz, M., Reza-Vargas, M. del C., Chew-Madinaveita, R. G., & Meza-Velázquez, J. A. (2011). Propiedades funcionales de las antocianinas. BIOtecnia, 13(2), 16. https://doi.org/10.18633/bt.v13i2.81
Almeida, A. B. de, Silva, A. K. C., Lodete, A. R., Egea, M. B., Lima, M. C. P. M., & Silva, F. G. (2019). Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, 49(3), 381–392. https://doi.org/10.1108/NFS-07-2018-0199
Almeida de Paula, C. C., Lordeiro, R. A., Piccin, E., & Augusti, R. (2015). Paper spray mass spectrometry applied to the detection of cocaine in simulated samples. Analytical Methods, 7(21), 9145–9149. https://doi.org/10.1039/C5AY02263K
AOAC, A. of official analytical chemists. (2012). Official methods of analysis (19o ed).
Banerjee, A., Dasgupta, N., & Bratati, D. (2005). In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chemistry, 90(4), 727–733. https://doi.org/doi.org/10.1016
Becker, N. A., Volcão, L. M., Camargo, T. M., Freitag, R. A., & Ribeiro, G. A. (2017). Biological properties of Eugenia uniflora L. essential oil: chemical composition and antimicrobial activity. VITTALLE - Revista de Ciências da Saúde, 29(1), 22–30. https://doi.org/10.14295/vittalle.v29i1.6267
Ben Said, R., Hamed, A. I., Mahalel, U. A., Al-Ayed, A. S., Kowalczyk, M., Moldoch, J., Oleszek, W., & Stochmal, A. (2017). Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. International Journal of Molecular Sciences, 18(3), 512. https://doi.org/10.3390/ijms18030512
Bicas, J. L., Molina, G., Dionísio, A. P., Barros, F. F. C., Wagner, R., Maróstica, M. R., & Pastore, G. M. (2011). Volatile constituents of exotic fruits from Brazil. Food Research International, 44(7), 1843–1855. https://doi.org/10.1016/j.foodres.2011.01.012
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
Camlofski, A. M. de O. (2008). Caracterização do fruto de cerejeira (Eugenia involucrata DC) visando seu aproveitamento tecnológico. (Dissertação de Mestrado Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos ) Universidade Estadual de Ponta Grossa,.
Cardoso, L. M., Leite, J. P. V., & Peluzio, M. do C. G. (2011). Efeitos biológicos das antocianinas no processo aterosclerótico. Revista Colombiana de Ciencias Químico - Farmacéuticas, 40(1), 116–138. http://www.scielo.org.co/scielo.php?pid=S0034-74182011000100007&script=sci_abstract&tlng=pt
Chen, G., Li, X., Saleri, F., & Guo, M. (2016). Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities. Molecules, 21(10), 1275. https://doi.org/10.3390/molecules21101275
de Araújo, F. F., Neri-Numa, I. A., de Paulo Farias, D., da Cunha, G. R. M. C., & Pastore, G. M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57–72. https://doi.org/10.1016/j.foodres.2019.03.018
Díaz-de-Cerio, E., Aguilera-Saez, L. M., Gómez-Caravaca, A. M., Verardo, V., Fernández-Gutiérrez, A., Fernández, I., & Arráez-Román, D. (2018). Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Analytical and Bioanalytical Chemistry, 410(15), 3607–3619. https://doi.org/10.1007/s00216-018-1051-5
El-Sayed, M. A., Al-Gendy, A. A., Hamdan, D. I., & El-Shazly, A. M. (2017). Fitoconstituintes, Perfil LC-ESI-MS, Antioxidante e atividades antimicrobianas de Citrus x limão EU. Burm f. Cultivar Variegada Rosa Limão. Journal of Pharmaceutical Sciences and Research, 9(4), 375–392.
El Hadi, M., Zhang, F.-J., Wu, F.-F., Zhou, C.-H., & Tao, J. (2013). Advances in Fruit Aroma Volatile Research. Molecules, 18(7), 8200–8229. https://doi.org/10.3390/molecules18078200
El Sayed, A. M., Ezzat, S. M., El Naggar, M. M., & El Hawary, S. S. (2016). In vivo diabetic wound healing effect and HPLC–DAD–ESI–MS/MS profiling of the methanol extracts of eight Aloe species. Revista Brasileira de Farmacognosia, 26(3), 352–362. https://doi.org/10.1016/j.bjp.2016.01.009
Faria, A. F., Marques, M. C., & Mercadante, A. Z. (2011). Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chemistry, 126(4), 1571–1578. https://doi.org/10.1016/j.foodchem.2010.12.007
Flores, G., Dastmalchi, K., Paulino, S., Whalen, K., Dabo, A. J., Reynertson, K. A., Foronjy, R. F., D’Armiento, J. M., & Kennelly, E. J. (2012). Anthocyanins from Eugenia brasiliensis edible fruits as potential therapeutics for COPD treatment. Food Chemistry, 134(3), 1256–1262. https://doi.org/10.1016/j.foodchem.2012.01.086
Francisco, V., Almeida, L., Bogusz Junior, S., Oiano Neto, J., & Nassu, R. (2020). Optimization of extraction conditions of volatile compounds of roasted beef by solid-phase microextraction. Química Nova. https://doi.org/10.21577/0100-4042.20170505
Franco, M. R. B., & Shibamoto, T. (2000). Volatile Composition of Some Brazilian Fruits: Umbu-caja ( Spondias citherea ), Camu-camu ( Myrciaria dubia ), Araça-boi ( Eugenia stipitata ), and Cupuaçu ( Theobroma grandiflorum ). Journal of Agricultural and Food Chemistry, 48(4), 1263–1265. https://doi.org/10.1021/jf9900074
Gabbanini, S., Lucchi, E., Guidugli, F., Matera, R., & Valgimigli, L. (2010). Anomeric discrimination and rapid analysis of underivatized lactose, maltose, and sucrose in vegetable matrices by U-HPLC-ESI-MS/MS using porous graphitic carbon. S. Gabbanini, E. Lucchi, F. Guidugli, R. Matera and L. Valgimigli, 45, 1012–1018. https://doi.org/10,1002 / jms.1750
García-Cruz, L., Dueñas, M., Santos-Buelgas, C., Valle-Guadarrama, S., & Salinas-Moreno, Y. (2017). Betalains and phenolic compounds profiling and antioxidant capacity of pitaya ( Stenocereus spp.) fruit from two species ( S. Pruinosus and S. stellatus ). Food Chemistry, 234, 111–118. https://doi.org/10.1016/j.foodchem.2017.04.174
García, Y., Rufini, J., Campos, M., Guedes, M., Augusti, R., & Melo, J. (2019). SPME Fiber Evaluation for Volatile Organic Compounds Extraction from Acerola. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180173
Gouveia, S. C., & Castilho, P. C. (2010). Characterization of phenolic compounds in Helichrysum melaleucum by high-performance liquid chromatography with on-line ultraviolet and mass spectrometry detection. Rapid Communications in Mass Spectrometry, 24(13), 1851–1868. https://doi.org/10.1002/rcm.4585
Guo, Y., Gu, Z., Liu, X., Liu, J., Ma, M., Chen, B., & Wang, L. (2017). Rapid Analysis of Corni fructus Using Paper Spray-Mass Spectrometry. Phytochemical Analysis, 28(4), 344–350. https://doi.org/10.1002/pca.2681
Haminiuk, C. W. I., Maciel, G. M., Plata-Oviedo, M. S. V., & Peralta, R. M. (2012). Phenolic compounds in fruits - an overview. International Journal of Food Science & Technology, 47(10), 2023–2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x
Helt, K. M. P., Navas, R., & Gonçalves, E. M. (2018). Características físico-químicas e compostos antioxidantes de frutos de pitanga da região de Capão Bonito, SP. Revista de Ciências Agroambientais, 16(1), 96–102. https://doi.org/10.5327/Z1677-606220181400
Huang, W., Serra, O., Dastmalchi, K., Jin, L., Yang, L., & Stark, R. E. (2017). Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. Journal of Agricultural and Food Chemistry, 65(10), 2258–2274. https://doi.org/10.1021/acs.jafc.6b05179
Infante, J., Rosalen, P. L., Lazarini, J. G., Franchin, M., & Alencar, S. M. de. (2016). Antioxidant and Anti-Inflammatory Activities of Unexplored Brazilian Native Fruits. PLOS ONE, 11(4), e0152974. https://doi.org/10.1371/journal.pone.0152974
Jiao, Q.-S., Xu, L.-L., Zhang, J.-Y., Wang, Z.-J., Jiang, Y.-Y., & Liu, B. (2018). Rapid Characterization and Identification of Non-Diterpenoid Constituents in Tinospora sinensis by HPLC-LTQ-Orbitrap MSn. Molecules, 23(2), 274. https://doi.org/10.3390/molecules23020274
Kajdžanoska, M., Gjamovski, V., & Stefova, M. (2010). HPLC-DAD-ESI-MSn Identification of phenolic compounds in cultivated strawberries from Macedonia. Macedonian Journal of Chemistry and Chemical Engineering, 29(2), 181–194.
Kosinska, A., Dieringa, S., Prima, D., Heritier, J., & Andlauer, W. (2013). Phenolic compounds profile of strawberry fruits of Charlotte cultivar. Journal of Berry Research, 3, 15–23. https://doi.org/DOI:10.3233/JBR-130043
Lee, J.-H., Johnson, J. V., & Talcott, S. T. (2005). Identification of Ellagic Acid Conjugates and Other Polyphenolics in Muscadine Grapes by HPLC-ESI-MS. Journal of Agricultural and Food Chemistry, 53(15), 6003–6010. https://doi.org/10.1021/jf050468r
Lenquiste, S. A., Batista, Â. G., Marineli, R. da S., Dragano, N. R. V., & Maróstica, M. R. (2012). Freeze-dried jaboticaba peel added to high-fat diet increases HDL-cholesterol and improves insulin resistance in obese rats. Food Research International, 49(1), 153–160. https://doi.org/10.1016/j.foodres.2012.07.052
Machado, A. P. D. F., Pereira, A. L. D., Barbero, G. F., & Martínez, J. (2017). Recovery of anthocyanins from residues of Rubus fruticosus , Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231, 1–10. https://doi.org/10.1016/j.foodchem.2017.03.060
Magina, M. A., Gilioli, A., Moresco, H. H., Colla, G., PizzolattiI, M. G., & Brighente, I. M. C. (2010). Atividade antioxidante de três espécies de Eugenia (Myrtaceae). Latin American Journal of Pharmacy, 29(2), 376–382.
Magina, M. D. A., Dalmarco, E. M., Dalmarco, J. B., Colla, G., Pizzolatti, M. G., & Brighente, I. M. C. (2012a). Bioactive triterpenes and phenolics of leaves of Eugenia brasiliensis. Química Nova, 35(6), 1184–1188. https://doi.org/10.1590/S0100-40422012000600022
Magina, M. D. A., Dalmarco, E. M., Dalmarco, J. B., Colla, G., Pizzolatti, M. G., & Brighente, I. M. C. (2012b). Bioactive triterpenes and phenolics of leaves of Eugenia brasiliensis. Química Nova, 35(6), 1184–1188. https://doi.org/10.1590/S0100-40422012000600022
Regulamento Técnico Geral para Fixação dos Padrões de Identidade e Qualidade para Polpa de Fruta., Pub. L. No. IN no 01, de 07 de janeiro de 2000. (2000).
Mascherpa, D., Carazzone, C., Marrubini, G., Gazzani, G., & Papetti, A. (2012). Identification of Phenolic Constituents in Cichorium endivia Var. crispum and Var. latifolium Salads by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ioniziation Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 60(49), 12142–12150. https://doi.org/10.1021/jf3034754
Medeiros, A. T., Sabaa-Srur, A. U. de O., & Barbosa, N. (2015). Determinação física e química da polpa de grumixama (Eugenia brasiliensis, Lam). Journal of Fruits and Vegetables, 1(1), 67–70.
Medeiros de Aguiar, T., Ubirajara Oliveira Sabaa-Srur, A., & E. Smith, R. (2016). Study of Grumixama (Eugenia Brasiliensis, Lam) Fruit Pulp and Development of a Jelly: Rheological, Sensorial and Colorimetric Evaluation. The Natural Products Journal, 6(2), 142–151. https://doi.org/10.2174/2210315506999160506110340
Merkle, S., Kleeberg, K., & Fritsche, J. (2015). Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatography, 2(3), 293–381. https://doi.org/10.3390/chromatography2030293
Mesquita, P. R. R., Nunes, E. C., Santos, F. N. dos, Bastos, L. P., Costa, M. A. P. C., de M. Rodrigues, F., & de Andrade, J. B. (2017). Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC–MS and chemometric analysis. Microchemical Journal, 130, 79–87. https://doi.org/10.1016/j.microc.2016.08.005
Manual Operacional de Bebidas e Vinagre, onde constam o modelo de manual da qualidade, o protocolo de validação de métodos físico-químicos, o protocolo de cálculo da incerteza associada às medições e os métodos de análise de bebidas fermentadas, destilada, 11 (2005).
Moeller, S. M., Jacques, P. F., & Blumberg, J. B. (2000). The Potential Role of Dietary Xanthophylls in Cataract and Age-Related Macular Degeneration. Journal of the American College of Nutrition, 19(sup5), 522S-527S. https://doi.org/10.1080/07315724.2000.10718975
Muller, P. S. (2011). Microencapsulação do óleo essencial de laranja. (Dissertação de mestrado em Tecnologia de Alimentos) Universidade Federal do Paraná.
Nascimento, L. S. M., Santiago, M. C. P. A., Oliveira, E. M. M., Borguini, R. G., Braga, E. C. O., Martins, V. C., Pacheco, S., Souza, M. C., & Gogoy, R. L. O. (2017). Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology: Open Access, 3(3). https://doi.org/10.16966/2470-6086.146
Nascimento, L. S. M., Santiago, M. C. P. A., Oliveira, E. M. M., Borguini, R. G., Braga, E. C. O., Martins, V. C., Pacheco, S., Souza, M. C., & R L O Gogoy. (2017). Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology: Open Access, 3(3). https://doi.org/10.16966/2470-6086.146
Paudel, L., Wyzgoski, F. J., Scheerens, J. C., Chanon, A. M., Reese, R. N., Smiljanic, D., Wesdemiotis, C., Blakeslee, J. J., Riedl, K. M., & Rinaldi, P. L. (2013). Nonanthocyanin Secondary Metabolites of Black Raspberry ( Rubus occidentalis L.) Fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS Analyses. Journal of Agricultural and Food Chemistry, 61(49), 12032–12043. https://doi.org/10.1021/jf4039953
Pellis, V. F. (2019). A família Myrtaceae Juss. no Parque Municipal da Lagoa do Peri, Santa Catarina, Brasil. (Trabalho de Conclusão de Curso apresentado ao curso)- Universidade Federal de Santa Catarina.
Pimentel, C.V.M.B., Francki, V.M., Gollucke, A. P. . (2005). Alimentos funcionais: introdução às principais substâncias bioativas em alimentos (Varela (org.)).
Queiroga, R. de C. R. E., Madruga, M. S., Galvão, M. de S., & Costa, R. G. da. (2005). Otimização das condições de extração de compostos voláteis em leite caprino utilizando a técnica de extração e concentração simultânea. Rev Inst Adolfo Lutz, 64(1), 97–103. http://periodicos.ses.sp.bvs.br/pdf/rial/v64n1/v64n1a15.pdf
Reynertson, K. A., Yang, H., Jiang, B., Basile, M. J., & Kennelly, E. J. (2008). Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry, 109(4), 883–890. https://doi.org/10.1016/j.foodchem.2008.01.021
Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037
Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. . (2007). Metodologia Científica: determinação da atividade antioxidante total em frutas pela método de captura do radical livre ABTS*+. https://www.embrapa.br/agroindustria-tropical/busca-de-publicacoes/-/publicacao/426954/metodologia-cientifica-determinacao-da-atividade-antioxidante-total-em-frutas-pela-captura-do-radical-livre-abts
Santos, A. C. A. dos, Serafini, L. A., & Cassel, E. (2003). Estudo de Processos de Extração de Óleos Essenciais e Bioflavonoides de Frutas Cítricas (Educs (org.)).
Schimidt, H. (2018). Caracterização físico-química, nutricional e de compostos bioativos de sete espécies da família Myrtaceae nativas da região sul do Brasil. (Dissertação Mestrado em Ciência e Tecnologia de Alimentos) Universidade Federal do Rio Grande do Sul.
Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. The Plant Journal, 54(4), 712–732. https://doi.org/10.1111/j.1365-313X.2008.03446.x
Siebert, D. A., Bastos, J., Spudeit, D. A., Micke, G. A., & Alberton, M. D. (2017). Determination of phenolic profile by HPLC-ESI-MS/MS and anti-inflammatory activity of crude hydroalcoholic extract and ethyl acetate fraction from leaves of Eugenia brasiliensis. Revista Brasileira de Farmacognosia, 27(4), 459–465. https://doi.org/10.1016/j.bjp.2017.01.008
Silva, N. A. da, Rodrigues, E., Mercadante, A. Z., & de Rosso, V. V. (2014). Phenolic Compounds and Carotenoids from Four Fruits Native from the Brazilian Atlantic Forest. Journal of Agricultural and Food Chemistry, 62(22), 5072–5084. https://doi.org/10.1021/jf501211p
Silva, M., Bueno, G., Araújo, R., Lacerda, I., Freitas, L., Morais, H., Augusti, R., & Melo, J. (2019). Evaluation of the Influence of Extraction Conditions on the Isolation and Identification of Volatile Compounds from Cagaita (Eugenia dysenterica) Using HS‑SPME/GC-MS. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180187
Silva, M., Freitas, L., Souza, A., Araújo, R., Lacerda, I., Pereira, H., Augusti, R., & Melo, J. (2019). Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) using Paper Spray Mass Spectrometry. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20190002
Spínola, V., Pinto, J., & Castilho, P. C. (2015). Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chemistry, 173, 14–30. https://doi.org/10.1016/j.foodchem.2014.09.163
Stefova, M., & Ivanova, V. (2011). Analytical Methodology for Characterization of Grape and Wine Phenolic Bioactives. In Fruit and Cereal Bioactives (p. 409–427). CRC Press. https://doi.org/10.1201/b10786-25
Teixeira, Luciane de L., Hassimotto, N. M. A., & Lajolo, F. M. (2018). Grumixama— Eugenia brasiliensis Lam. In Exotic Fruits (p. 219–224). Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00028-9
Teixeira, Luciane de Lira, Bertoldi, F. C., Lajolo, F. M., & Hassimotto, N. M. A. (2015). Identification of Ellagitannins and Flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. Journal of Agricultural and Food Chemistry, 63(22), 5417–5427. https://doi.org/10.1021/acs.jafc.5b01195
Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111(4), 816–823. https://doi.org/10.1016/j.foodchem.2008.04.054
Vu, H. T., Scarlett, C. J., & Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods, 40, 238–248. https://doi.org/10.1016/j.jff.2017.11.006
Wang, J., Jia, Z., Zhang, Z., Wang, Y., Liu, X., Wang, L., & Lin, R. (2017). Analysis of Chemical Constituents of Melastoma dodecandrum Lour. by UPLC-ESI-Q-Exactive Focus-MS/MS. Molecules, 22(3), 476. https://doi.org/10.3390/molecules22030476
Zola, F. G., Rodrigues, A. C., Oliveira, B. D., Sacramento, N. T. B., Taylor, J. G., Pinto, U. M., & Bertoldi, M. C. (2019). Mineral and centesimal contents, antioxidant activity and antimicrobial action of phenolic compounds from Eugenia Brasiliensis Lam. Pulp. Food Science and Technology. https://doi.org/10.1590/fst.18518
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.