Análise prospectiva científica e tecnológica sobre o uso de bioinformática para o desenho de vacinas peptídicas

Autores

DOI:

https://doi.org/10.33448/rsd-v12i3.40287

Palavras-chave:

Peptide vaccine; Bioinformatics; Design vaccine.

Resumo

As infecções causadas por bactérias têm ocasionado diversos impactos negativos para a saúde e economia. Em virtude do seu potencial de transmissibilidade, vem despertando grande interesse dos cientistas, uma vez que grande parte desses microrganismos apresentam resistência a antibióticos e não possuem tratamentos e profilaxia eficazes. Diante disso, a ciência vem agregando a informática para analisar dados importantes na intenção de obter informações, e assim conseguir realizar o desenho vacinal contra esses patógenos. O objetivo desse estudo foi buscar na literatura e em invenções, os arquivos que estivessem relacionados a vacinas peptídicas desenvolvidas a partir do uso da bioinformática. Peptide vaccine, bioinformatics e design vaccine foram as palavras-chave utilizadas para a busca de artigos e patentes nas seguintes bases de dados: PubMed, INPI e WIPO. O levantamento de dados permitiu encontrar uma amostra de 259 artigos científicos e 31 patentes existentes nos últimos 11 anos na base da WIPO, além de 31 patentes na INPI. A elaboração de prospecções científico-tecnológicas é de extrema importância por proporcionar uma maior aquisição de conhecimento acerca da temática abordada e permitir ao cientista um melhor direcionamento do estudo.

Referências

Abdelmageed, M. I., Abdelmoneim, A. H., Mustafa, M. I., Elfadol, N. M., Murshed, N. S., Shantier, S. W., & Makhawi, A. M. (2020a). Design of a Multiepitope-Based Peptide Vaccine against the e Protein of Human COVID-19: An Immunoinformatics Approach. BioMed Research International, 2020. https://doi.org/10.1155/2020/2683286

Abdelmageed, M. I., Abdelmoneim, A. H., Mustafa, M. I., Elfadol, N. M., Murshed, N. S., Shantier, S. W., & Makhawi, A. M. (2020b). Design of a Multiepitope-Based Peptide Vaccine against the e Protein of Human COVID-19: An Immunoinformatics Approach. BioMed Research International, 2020. https://doi.org/10.1155/2020/2683286

Bulley, A., & Irish, M. (2018). The functions of prospection - Variations in health and disease. Frontiers in Psychology, 9(NOV), 2328. https://doi.org/10.3389/FPSYG.2018.02328/BIBTEX

de Almeida Borges, P., de Araújo, L. P., Lima, L. A., Ghesti, G. F., & Souza Carmo, T. (2020). The triple helix model and intellectual property: The case of the University of Brasilia. World Patent Information, 60, 101945. https://doi.org/10.1016/J.WPI.2019.101945

Dey, S., De, A., & Nandy, A. (2016). Rational design of peptide vaccines against multiple types of human papillomavirus. Cancer Informatics, 15, 1–16. https://doi.org/10.4137/CIN.S39071/ASSET/IMAGES/LARGE/10.4137_CIN.S39071-FIG2.JPEG

Cross, D., Thomson, S., & Sinclair, Alexandra. (2017). Research in Brazil A report for CAPES by Clarivate Analytics.

Droppa-Almeida, D., Franceschi, E., & Padilha, F. F. (2018). Immune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinformatics and Biology Insights, 12. https://doi.org/10.1177/1177932218755337/ASSET/IMAGES/LARGE/10.1177_1177932218755337-FIG2.JPEG

Ejigu, G. F., & Jung, J. (2020). Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology, 9(9), 1–27. https://doi.org/10.3390/BIOLOGY9090295

Fasi, M. A. (2022). An Overview on patenting trends and technology commercialization practices in the university Technology Transfer Offices in USA and China. World Patent Information, 68, 102097. https://doi.org/10.1016/J.WPI.2022.102097

Fonseca, E. M. da, Shadlen, K. C., & Bastos, F. I. (2021). The politics of COVID-19 vaccination in middle-income countries: Lessons from Brazil. Social Science & Medicine, 281, 114093. https://doi.org/10.1016/J.SOCSCIMED.2021.114093

Kalita, P., Padhi, A. K., Zhang, K. Y. J., & Tripathi, T. (2020). Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microbial Pathogenesis, 145, 104236. https://doi.org/10.1016/J.MICPATH.2020.104236

Lima, C. C., Benjamim, S. C. C., & Santos, R. F. S. dos. (2017). Mecanismo de resistência bacteriana frente aos fármacos: uma revisão. CuidArte, Enferm, 105–113. http://www.webfipa.net/facfipa/ner/sumarios/cuidarte/2017v1/15%20Artigo_Mecanismo%20resist%C3%AAncia%20bacteriana%20a%20antibi%C3%B3ticos_27-07-17.pdf

Lohia, N., & Baranwal, M. (2020). An immunoinformatics approach in design of synthetic peptide vaccine against influenza virus. Methods in Molecular Biology, 2131, 229–243. https://doi.org/10.1007/978-1-0716-0389-5_11/COVER

Maxwell, I. A., & Maxwell, N. J. L. (2022). A review of Chinese-owned Australian patents. World Patent Information, 71, 102151. https://doi.org/10.1016/J.WPI.2022.102151

Montecchi, T., Russo, D., & Liu, Y. (2013a). Searching in Cooperative Patent Classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. https://doi.org/10.1016/J.AEI.2013.02.002

Montecchi, T., Russo, D., & Liu, Y. (2013b). Searching in Cooperative Patent Classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. https://doi.org/10.1016/J.AEI.2013.02.002

Mustafa, M. I., Shantier, S. W., Abdelmageed, M. I., & Makhawi, A. M. (2021). Epitope-based peptide vaccine against Bombali Ebolavirus viral protein 40: An immunoinformatics combined with molecular docking studies. Informatics in Medicine Unlocked, 25, 100694. https://doi.org/10.1016/J.IMU.2021.100694

Pereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. Journal of Clinical Medicine 2020, Vol. 9, Page 132, 9(1), 132. https://doi.org/10.3390/JCM9010132

Ray, M., Sable, M. N., Sarkar, S., & Hallur, V. (2021). Essential interpretations of bioinformatics in COVID-19 pandemic. Meta Gene, 27, 100844. https://doi.org/10.1016/J.MGENE.2020.100844

Rother, E. T. (2007). Revisão Sistemática x Revisão Narrativa. Acta Paul Enferm ; Vol. 20. https://doi.org/10.1590/S0103-21002007000200001

Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/J.MOLIMM.2019.04.030

Sánchez-Burgos, G. G., Montalvo-Marin, N. M., Díaz-Rosado, E. R., & Pérez-Rueda, E. (2021). In silico identification of chikungunya virus b-and t-cell epitopes with high antigenic potential for vaccine development. Viruses, 13(12), 2360. https://doi.org/10.3390/V13122360/S1

Sardar, R., Satish, D., Birla, S., & Gupta, D. (2020). Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon, 6(9), e04658. https://doi.org/10.1016/J.HELIYON.2020.E04658

Shahid, F., Ashfaq, U. A., Javaid, A., & Khalid, H. (2020). Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infection, Genetics and Evolution, 80, 104199. https://doi.org/10.1016/J.MEEGID.2020.104199

Sharma, A., Virmani, T., Pathak, V., Sharma, A., Pathak, K., Kumar, G., & Pathak, D. (2022). Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BioMed Research International, 2022. https://doi.org/10.1155/2022/7205241

Soudry, D., Hoffer, E., Nacson, M. S., & Srebro, N. (2018). The Implicit Bias of Gradient Descent on Separable Data. Journal of Machine Learning Research, 19, 1–57. http://jmlr.org/papers/v19/18-188.html.

Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering, 5(4), 653–661. https://doi.org/10.1016/J.ENG.2019.01.014

Torrisi, M., Pollastri, G., & Le, Q. (2020). Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 1301–1310. https://doi.org/10.1016/J.CSBJ.2019.12.011

Wenham, C., Smith, J., & Morgan, R. (2020). COVID-19: the gendered impacts of the outbreak. The Lancet, 395(10227), 846–848. https://doi.org/10.1016/S0140-6736(20)30526-2

Wu, Q., Zaid, M., Xuan, Z., Wang, C., Gu, H., Shi, M., Zhu, J., Hu, Y., & Liu, J. (2021). Changes in epidemiological features of vaccine preventable infectious diseases among three eras of national vaccination strategies from 1953 to 2018 in Shanghai, China. The Lancet Regional Health - Western Pacific, 7, 100092. https://doi.org/10.1016/J.LANWPC.2021.100092

Wu, R., Wang, H., Lv, X., Shen, X., & Ye, G. (2020). Rapid action of mechanism investigation of Yixin Ningshen tablet in treating depression by combinatorial use of systems biology and bioinformatics tools. Journal of Ethnopharmacology, 257, 112827. https://doi.org/10.1016/J.JEP.2020.112827

Yazdani, Z., Rafiei, A., Yazdani, M., & Valadan, R. (2020). Design an Efficient Multi-Epitope Peptide Vaccine Candidate Against SARS-CoV-2: An in silico Analysis. Infection and Drug Resistance, 13, 3007. https://doi.org/10.2147/IDR.S264573

Zaini, W. M. F., Lai, D. T. C., & Lim, R. C. (2022). Identifying patent classification codes associated with specific search keywords using machine learning. World Patent Information, 71, 102153. https://doi.org/10.1016/J.WPI.2022.102153

Zerihun, M. B., Pucci, F., Peter, E. K., & Schug, A. (2020). pydca v1.0: a comprehensive software for direct coupling analysis of RNA and protein sequences. Bioinformatics, 36(7), 2264–2265. https://doi.org/10.1093/BIOINFORMATICS/BTZ892

Zhang, D., Yang, Y., Li, M., Lu, Y., Liu, Y., Jiang, J., Liu, R., Liu, J., Huang, X., Li, G., & Qu, J. (2022). Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. Engineering, 10, 155–166. https://doi.org/10.1016/J.ENG.2020.11.002

Zhang, X. M., Liang, L., Liu, L., & Tang, M. J. (2021). Graph Neural Networks and Their Current Applications in Bioinformatics. Frontiers in Genetics, 12. https://doi.org/10.3389/FGENE.2021.690049

Downloads

Publicado

02/03/2023

Como Citar

FEITOSA, L. N. M.; RODRIGUES, Ítalo S. G. .; SANTOS, T. B. dos .; SANTOS, M. P. de J.; SANTOS, R. do C. .; MACHADO, T. de O. X.; DROPPA-ALMEIDA, D. Análise prospectiva científica e tecnológica sobre o uso de bioinformática para o desenho de vacinas peptídicas. Research, Society and Development, [S. l.], v. 12, n. 3, p. e13912340287, 2023. DOI: 10.33448/rsd-v12i3.40287. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40287. Acesso em: 25 nov. 2024.

Edição

Seção

Ciências da Saúde