Actividad antiproliferativa de cinco aceites esenciales de Myrtaceae
DOI:
https://doi.org/10.33448/rsd-v12i3.40536Palavras-chave:
Myrcia spp. and Eugenia spp.; Óleos essenciais; Atividade antiproliferativa in vitro.Resumo
Las plantas de Myrtaceae se cultivan por sus frutos comestibles y usos medicinales populares. Asimismo, se describe que sus aceites esenciales (AE) de hojas, flores y frutos tienen actividades antiproliferativas, antimicrobianas y antioxidantes. Este trabajo analizó las composiciones químicas y evaluó las actividades antiproliferativas de los aceites esenciales (AE) de Myrcia bella Cambess, Myrcia fallax (Rich.) DC., Myrcia guianensis (Aubl.) DC., Eugenia aurata O. Berg, y Eugenia punicifolia (Kunth) DC, del Cerrado brasileño. Los EO se obtuvieron por hidrodestilación de hojas y se analizaron por cromatografía de gases-espectrometría de masas (GC-MS) más cromatografía de gases-detector de ionización de llama (GC-FID). El componente mayoritario en M. bella fue α-cadinol (14,4%); en Myrcia fallax (Rich.) DC., acetato de guaiol (14,4%); y en M.guianensis, (E)-iso-g‑bisaboleno (17,5%). Para E. aurata y E. punicifolia, el biciclogermacreno (25,3 %) y el (E)-cariofileno (18 %), respectivamente, fueron los constituyentes químicos más relevantes. Los EO se probaron frente a las líneas de células tumorales humanas UACC-62 (melanoma), MCF7 (mama), 786-0 (riñón), NCI-H460 (pulmón), OVCAR-3 (ovario), HT29 (colon) y K562. (leucemia) y una línea celular no tumoral (VERO). Eugenia aurata presentó el efecto más prometedor contra HT29 (TGI = 1.5 mg/mL), K562 (TGI = 5.0 mg/mL) y no presentó toxicidad contra células VERO no tumorales (TGI > 250 mg/mL). Para los otros AE, se observó actividad de moderada a nula. Entonces, en conclusión, los AE de E. aurata revelaron un buen potencial para aplicaciones anticancerígenas.
Referências
Abu-Izneid, T., Rauf, A., Shariati, M. A., Khalil, A. A., Imran, M., Rebezov, M., Uddin, Md. S., Mahomoodally, M. F., & Rengasamy, K. R. R. (2020). Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacological Research, 161, 105165. https://doi.org/10.1016/j.phrs.2020.105165
Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectorscopy (4th ed). Allured Pub. Corp.
Alves, C. C. F., Oliveira, J. D., Estevam, E. B. B., Xavier, M. N., Nicolella, H. D., Furtado, R. A., Tavares, D. C., & Miranda, M. L. D. (2020). Antiproliferative activity of essential oils from three plants of the Brazilian Cerrado: Campomanesia adamantium (Myrtaceae), Protium ovatum (Burseraceae) and Cardiopetalum calophyllum (Annonaceae). Brazilian Journal of Biology, 80(2), 290–294. https://doi.org/10.1590/1519-6984.192643
Aranha, E. S. P., de Azevedo, S. G., dos Reis, G. G., Silva Lima, E., Machado, M. B., & de Vasconcellos, M. C. (2019). Essential oils from Eugenia spp.: In vitro antiproliferative potential with inhibitory action of metalloproteinases. Industrial Crops and Products, 141, 111736. https://doi.org/10.1016/j.indcrop.2019.111736
Barbosa, L. C. A., Filomeno, C. A., & Teixeira, R. R. (2016). Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules, 21, 1671. https://doi.org/10.3390/molecules21121671
Bernardes, R. S. A., Sarrazin, S. L. F., dos Santos, F. A., Melo Rego, M. J. B. de, Rocha Pitta, M. G. da, Cordeiro, M. F., Almeida, P. D. O. de, Oliveira, R. B. de, Maduro Bouillet, L. E., Soares Maia, J. G., & Veras Mourao, R. H. (2018). Antioxidant Capacity and Cytotoxicity of the Aqueous Extract of Myrcia guianensis (Aubl.) DC. Pharmacognosy Journal, 10(6s), s135–s140. https://doi.org/10.5530/pj.2018.6s.25
Cardoso, C. A. L., & Ré-Poppi, N. (2009). Identification of the Volatile Compounds of Flower Oil of Campomanesia pubescens (Myrtaceae). Journal of Essential Oil Research, 21(5), 433–434. https://doi.org/10.1080/10412905.2009.9700210
Cascaes, M., Guilhon, G., Andrade, E., Zoghbi, M., & Santos, L. (2015). Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants. International Journal of Molecular Sciences, 16(10), 23881–23904. https://doi.org/10.3390/ijms161023881
Cerqueira, M. D. de, Souza-Neta, L. C., Passos, M. das G. V. M., Lima, E. de O., Roque, N. F., Martins, D., Guedes, M. L. S., & Cruz, F. G. (2007). Seasonal variation and antimicrobial activity of Myrcia myrtifolia essential oils. Journal of the Brazilian Chemical Society, 18(5), 998–1003. https://doi.org/10.1590/S0103-50532007000500018
Costa, M. F., Jesus, T. I., Lopes, B. R. P., Angolini, C. F. F., Montagnolli, A., Gomes, L. de P., Pereira, G. S., Ruiz, A. L. T. G., Carvalho, J. E., Eberlin, M. N., dos Santos, C., & Toledo, K. A. (2016). Eugenia aurata and Eugenia punicifolia HBK inhibit inflammatory response by reducing neutrophil adhesion, degranulation and NET release. BMC Complementary and Alternative Medicine, 16(1), 403. https://doi.org/10.1186/s12906-016-1375-7
de Melo, J. G., Santos, A. G., de Amorim, E. L. C., Nascimento, S. C. do, & de Albuquerque, U. P. (2011). Medicinal Plants Used as Antitumor Agents in Brazil: An Ethnobotanical Approach. Evidence-Based Complementary and Alternative Medicine, 2011, 1–14. https://doi.org/10.1155/2011/365359
de Souza, A., de Oliveira, C., de Oliveira, V., Betim, F., Miguel, O., & Miguel, M. (2018). Traditional Uses, Phytochemistry, and Antimicrobial Activities of Eugenia Species – A Review. Planta Medica, 84(17), 1232–1248. https://doi.org/10.1055/a-0656-7262
Durazzini, A. M. S., Machado, C. H. M., Fernandes, C. C., Willrich, G. B., Crotti, A. E. M., Candido, A. C. B. B., Magalhães, L. G., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., Martins, C. H. G., & Miranda, M. L. D. (2019). Eugenia pyriformis Cambess: A species of the Myrtaceae family with bioactive essential oil. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2019.1669031
Farag, N. F., El-Ahmady, S. H., Abdelrahman, E. H., Naumann, A., Schulz, H., Azzam, S. M., & El-Kashoury, E.-S. A. (2018). Characterization of essential oils from Myrtaceae species using ATR-IR vibrational spectroscopy coupled to chemometrics. Industrial Crops and Products, 124, 870–877. https://doi.org/10.1016/j.indcrop.2018.07.066
Fernandes, Y., Matos, J., Lima, C., Tardini, A., Viera, F., Maia, J., Monteiro, O., Longato, G., & Rocha, C. (2021). Essential Oils Obtained from Aerial Eugenia punicifolia Parts: Chemical Composition and Antiproliferative Potential Evidenced through Cell Cycle Arrest. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20210036
Fouche, G., Cragg, G. M., Pillay, P., Kolesnikova, N., Maharaj, V. J., & Senabe, J. (2008). In vitro anticancer screening of South African plants. Journal of Ethnopharmacology, 119(3), 455–461. https://doi.org/10.1016/j.jep.2008.07.005
Franco, C. de J. P., Ferreira, O. O., Antônio Barbosa de Moraes, Â., Varela, E. L. P., Nascimento, L. D. do, Percário, S., de Oliveira, M. S., & Andrade, E. H. de A. (2021). Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules, 26(11), 3292. https://doi.org/10.3390/molecules26113292
Franco, C. de J. P., Ferreira, O. O., Cruz, J. N., Varela, E. L. P., de Moraes, Â. A. B., Nascimento, L. D. do, Cascaes, M. M., Souza Filho, A. P. da S., Lima, R. R., Percário, S., Oliveira, M. S. de, & Andrade, E. H. de A. (2022). Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules, 27(15), 4678. https://doi.org/10.3390/molecules27154678
Furtado, F., Borges, B., Teixeira, T., Garces, H., Almeida Junior, L., Alves, F., Silva, C., & Fernandes Junior, A. (2018). Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius. International Journal of Molecular Sciences, 19(1), 33. https://doi.org/10.3390/ijms19010033
Gatto, L. J., Fabri, N. T., Souza, A. M. de, Fonseca, N. S. T. da, Furusho, A. dos S., Miguel, O. G., Dias, J. de F. G., Zanin, S. M. W., & Miguel, M. D. (2020). Chemical composition, phytotoxic potential, biological activities and antioxidant properties of Myrcia hatschbachii D. Legrand essential oil. Brazilian Journal of Pharmaceutical Sciences, 56, e18402. https://doi.org/10.1590/s2175-97902019000318402
Jerônimo, L. B., da Costa, J. S., Pinto, L. C., Montenegro, R. C., Setzer, W. N., Mourão, R. H. V., da Silva, J. K. R., Maia, J. G. S., & Figueiredo, P. L. B. (2021). Antioxidant and Cytotoxic Activities of Myrtaceae Essential Oils Rich in Terpenoids From Brazil. Natural Product Communications, 16(2), 1934578X2199615. https://doi.org/10.1177/1934578X21996156
Mazutti da Silva, S., Rezende Costa, C., Martins Gelfuso, G., Silva Guerra, E., de Medeiros Nóbrega, Y., Gomes, S., Pic-Taylor, A., Fonseca-Bazzo, Y., Silveira, D., & Magalhães, P. (2018). Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules, 24(1), 2. https://doi.org/10.3390/molecules24010002
Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. JNCI Journal of the National Cancer Institute, 83(11), 757–766. https://doi.org/10.1093/jnci/83.11.757
Oliveira, M. S., & Souza Filho, A. P. (2022). Terpenoids. Bentham Science Publishers.
Périco, L. L., Rodrigues, V. P., Ohara, R., Nunes, V. V. A., da Rocha, L. R. M., Vilegas, W., dos Santos, C., & Hiruma-Lima, C. A. (2019). Can the gastric healing effect of Eugenia punicifolia be the same in male and female rats? Journal of Ethnopharmacology, 235, 268–278. https://doi.org/10.1016/j.jep.2019.02.012
Ramos, M. F. de S., Monteiro, S. da S., da Silva, V. P., Nakamura, M. J., & Siani, A. C. (2010). Essential Oils From Myrtaceae Species of the Brazilian Southeastern Maritime Forest (Restinga). Journal of Essential Oil Research, 22(2), 109–113. https://doi.org/10.1080/10412905.2010.9700275
Russo, R., Corasaniti, M. T., Bagetta, G., & Morrone, L. A. (2015). Exploitation of Cytotoxicity of Some Essential Oils for Translation in Cancer Therapy. Evidence-Based Complementary and Alternative Medicine, 2015, 1–9. https://doi.org/10.1155/2015/397821
Saldanha, L. L., Allard, P.-M., Afzan, A., de Melo, F. P. de S. R., Marcourt, L., Queiroz, E. F., Vilegas, W., Furlan, C. M., Dokkedal, A. L., & Wolfender, J.-L. (2020). Metabolomics of Myrcia bella Populations in Brazilian Savanna Reveals Strong Influence of Environmental Factors on Its Specialized Metabolism. Molecules, 25(12), 2954. https://doi.org/10.3390/molecules25122954
Sales, D. S., Carmona, F., de Azevedo, B. C., Taleb-Contini, S. H., Bartolomeu, A. C. D., Honorato, F. B., Martinez, E. Z., & Pereira, A. M. S. (2014). Eugenia punicifolia (Kunth) DC. as an Adjuvant Treatment for Type-2 Diabetes Mellitus: A non-Controlled, Pilot Study. Phytotherapy Research, 28(12), 1816–1821. https://doi.org/10.1002/ptr.5206
Salvador, M. J., Carvalho, J. E. de, Wisniewski-Jr, A., Kassuya, C. A. L., Santos, É. P., Riva, D., & Stefanello, M. É. A. (2011). Chemical composition and cytotoxic activity of the essential oil from the leaves of Casearia lasiophylla. Revista Brasileira de Farmacognosia, 21(5), 864–868. https://doi.org/10.1590/S0102-695X2011005000073
Santos, P., Gomes, L., Mazzei, J., Fontão, A. P., Sampaio, A., Siani, A., & Valente, L. (2018). Polyphenol and triterpenoid constituents of eugenia florida dc. (myrtaceae) leaves and their antioxidant and cytotoxic potential. Química Nova. https://doi.org/10.21577/0100-4042.20170284
Scalvenzi, L., Grandini, A., Spagnoletti, A., Tacchini, M., Neill, D., Ballesteros, J., Sacchetti, G., & Guerrini, A. (2017). Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile. Molecules, 22(7), 1163. https://doi.org/10.3390/molecules22071163
Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3(1), 7. https://doi.org/10.1038/s41392-017-0004-3
Silva, E. A. J., Estevam, E. B. B., Silva, T. S., Nicolella, H. D., Furtado, R. A., Alves, C. C. F., Souchie, E. L., Martins, C. H. G., Tavares, D. C., Barbosa, L. C. A., & Miranda, M. L. D. (2019). Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae). Brazilian Journal of Biology, 79(4), 697–702. https://doi.org/10.1590/1519-6984.189089
Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. JNCI Journal of the National Cancer Institute, 82(13), 1107–1112. https://doi.org/10.1093/jnci/82.13.1107
Stefanello, M. É. A., Pascoal, A. C. R. F., & Salvador, M. J. (2011). Essential Oils from Neotropical Myrtaceae: Chemical Diversity and Biological Properties. Chemistry & Biodiversity, 8(1), 73–94. https://doi.org/10.1002/cbdv.201000098
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Catarina dos Santos; Natalia Covre de Melo; Ana Lucia Tasca Gois Ruiz; Mary Ann Floglio

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.