Desempenho fisiológico e bioquímico de cultivares de cevada sob estresse por restrição hídrica em diferentes temperaturas

Autores

DOI:

https://doi.org/10.33448/rsd-v12i7.41738

Palavras-chave:

Hordeum vulgare; Déficit hídrico; Estresse térmico.

Resumo

Este trabalho teve como objetivo avaliar a influência da restrição hídrica e de diferentes temperaturas no desempenho fisiológico e bioquímico de plântulas de cevada. O trabalho foi dividido em dois estudos. Primeiramente, foram testados potenciais osmóticos para simular a restrição hídrica em sementes de cevada, submetidas a diferentes temperaturas. O experimento foi conduzido em condições controladas nas temperaturas de 20 e 35 ºC. O delineamento estatístico utilizado foi inteiramente casualizado, em esquema fatorial 11 (cultivares) x 5 (potenciais osmóticos), com quatro repetições. Avaliou-se a primeira contagem de germinação, germinação e massa seca de plântulas. A partir do estudo I, realizou-se a seleção de duas cultivares com melhor desempenho e de uma com pior desempenho. Após, iniciou-se os experimentos do segundo estudo. O delineamento experimental utilizado foi o inteiramente casualizado, em esquema fatorial 3 (cultivares) x 5 (potenciais osmóticos), com quatro repetições. Avaliou-se a atividade enzimática antioxidante, peróxido de hidrogênio, peroxidação lipídica, açúcares solúveis totais e aminoácidos. O estresse por restrição hídrica, associado ou não a alta temperatura, afetou a germinação, vigor e crescimento inicial das cultivares. Quando submetidas a restrição hídrica e a 35 ºC as plântulas apresentaram teores elevados de enzimas, peróxido de hidrogênio, peroxidação lipídica, aminoácidos e açúcares solúveis totais.

Referências

Ahanger, M. A., Tomar, N. S., Tittal, M., Argal, S., & Agarwal, R. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23, 731-744.

Antunes, J. (2021). Cenário favorável para a cevada. https://www.embrapa.br/busca-de-noticias/-/noticia/62654017/cenario-favoravel-para-a-cevada.

Asgher, M., Per, T. S., Masood, A., Fatma, M., Freschi, L., Corpas, F. J., & Khan, N. A. (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research, 24, 2273-2285.

Aumonde, T. Z. et al. (2017). Estresses ambientais e a produção de sementes: Ciência e Aplicação. Cópias Santa Cruz.

Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed science research, 14(2), 93-107.

Bewley, J. D., & Black, M. (2013). Seeds: physiology of development and germination. Springer Science & Business Media.

Bieleski, R. L., & Turner, N. A. (1966). Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Analytical biochemistry, 17(2), 278-293.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Brasil – (2009). Regras para análise de sementes. Brasília: Secretaria de Defesa Agropecuária.

Britannica. (2020). The Editors of Encyclopaedia. "Barley". Encyclopedia Britannica, 3 Apr. https://www.britannica.com/plant/barley-cereal.

Carpentieri-pipolo, V. & Minella, E. (2021). Cevada alimento funcional-Alternativa para a diversificação e agregação de valor na cadeia produtiva de cereais. Boletim de Pesquisa e Desenvolvimento.

Carvalho, N.M. & Nakagawa, J. (2012). Sementes: ciência, tecnologia e produção. FUNEP.

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional plant biology, 30(3), 239-264.

Condé, A. B. T., de Oliveira Coelho, M. A., Yamanaka, C. H., & Corte, H. R. (2010). Adaptabilidade e estabilidade de genótipos de trigo sob cultivo de sequeiro em Minas Gerais. Pesquisa Agropecuária Tropical, 40(1), 45-52.

Dawson, I. K., Russell, J., Powell, W., Steffenson, B., Thomas, W. T., & Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytologist, 206(3), 913-931.

Dbira, S., Al Hassan, M., Gramazio, P., Ferchichi, A., Vicente, O., Prohens, J., & Boscaiu, M. (2018). Variable levels of tolerance to water stress (drought) and associated biochemical markers in Tunisian barley landraces. Molecules, 23(3), 613.

De Mori, C., & Minella, E. (2012). Aspectos econômicos e conjunturais da cultura da cevada.

Del Río, L. A.; Corpas, F.J.; López-Huertas, E. & Palma, J. M. (2018). Plant superoxide dismutases: function under abiotic stress conditions. In: Antioxidants and Antioxidant Enzymes in Higher Plants Cham. Springer International Publishing, 1-26.

Embrapa. (2012). A cevada no Brasil. Documento Online 139. Passo Fundo – RS: Embrapa Trigo.

Faostat. (2008). Statistical database. Food. agriculture organization of the United Nations.

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930.

Gluten, H., Eris, A. (2004) Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 166(3), 739-744.

Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional plant biology, 32(6), 481-494.

Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in plant science, 4, 419.

Hassani, A. et al. (2008). Efeito da Salinidade na Água e Alguns Osmólitos na Cevada (Hordeum Vulgare) Eur. J. Sci. Res, 23, 61-69.

Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in plant science, 9, 393.

Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., & Panneerselvam, R. (2007). Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids and surfaces B: Biointerfaces, 60(1), 110-116.

Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., ... & Bhardwaj, R. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science, 3, 13.

Kibinza, S., Bazin, J., Bailly, C., Farrant, J. M., Corbineau, F., & El-Maarouf-Bouteau, H. (2011). Catalase is a key enzyme in seed recovery from ageing during priming. Plant science, 181(3), 309-315.

Li, X., Lawas, L. M., Malo, R., Glaubitz, U., Erban, A., Mauleon, R., ... & Jagadish, K. S. (2015). Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell & Environment, 38(10), 2171-2192.

Lopes, J. C., & Macedo, C. M. P. D. (2008). Germinação de sementes de couve chinesa sob influência do teor de água, substrato e estresse salino. Revista Brasileira de Sementes, 30, 79-85.

Lopes, N.F. & Lima, M.G.DE S. (2015). Fisiologia da produção vegetal. UFV.

Loutfy, N., El-Tayeb, M. A., Hassanen, A. M., Moustafa, M. F., Sakuma, Y., & Inouhe, M. (2012). Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). Journal of plant research, 125, 173-184.

Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas. Abrates.

Medeiros, D. S. D., Alves, E. U., Sena, D. V. D. A., Silva, E. D. O., & Araújo, L. R. D. (2015). Desempenho fisiológico de sementes de gergelim submetidas a estresse hídrico em diferentes temperaturas. Semina Ciências Agrárias, 36(5), 3069-3076.

Meng, S., Zhang, C., Su, L., Li, Y., & Zhao, Z. (2016). Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environmental and Experimental Botany, 123, 78-87.

Mouradi, M., Bouizgaren, A., Farissi, M., Makoudi, B., Kabbadj, A., Very, A. A., ... & Ghoulam, C. (2016). Osmopriming improves seeds germination, growth, antioxidant responses and membrane stability during early stage of Moroccan alfalfa populations under water deficit. Chilean journal of agricultural research, 76(3), 265-272.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.

Nguyen, V. T., Nguyen, T. B., Chen, C. W., Hung, C. M., Chang, J. H., & Dong, C. D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresource Technology, 284, 197-203.

Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders?. Functional Plant Biology, 39(11), 851-859.

Peske, S.T.; Villela, F.A. & Meneghello, G.E. Sementes: Fundamentos Científicos e Tecnológicos. Editora Universitária/UFPel.

Pinheiro, L. G. S.; Brasil, V. C. B. & Ghesti, G. F. (2017). Caracterização do malte produzido com cevada do cerrado brasiliense. Revista Latino-Americana de Cerveja, 1(1), 63–72.

Samarah, N., & Alqudah, A. (2011). Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Archives of Agronomy and Soil Science, 57(1), 27-32.

Schulte, D., Close, T. J., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer, G., ... & Stein, N. (2009). The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant physiology, 149(1), 142-147.

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany.

Shewry, P. R., & Ullrich, S. E. (2014). Barley: chemistry and technology. Elsevier.

Silva, M. L. M. D., Alves, E. U., Bruno, R. D. L. A., Santos-Moura, S. D. S., & Santos Neto, A. P. D. (2016). Germinação de sementes de Chorisia glaziovii O. Kuntze submetidas ao estresse hídrico em diferentes temperaturas. Ciência Florestal, 26, 999-1007.

Taiz, L. & Zeiger, E. (2013). Fisiologia vegetal. Artmed.

Velikova, V., Yordanov, I., & Edreva, A. J. P. S. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant science, 151(1), 59-66.

Yemm, E. W., Cocking, E. C., & Ricketts, R. E. (1955). The determination of amino-acids with ninhydrin. Analyst, 80(948), 209-214.

Yigit, N., Sevik, H., Cetin, M., & Kaya, N. (2016). Determination of the effect of drought stress on the seed germination in some plant species. Water stress in plants, 43, 62.

Zhanassova, K., Kurmanbayeva, A., Gadilgereyeva, B., Yermukhambetova, R., Iksat, N., Amanbayeva, U., ... & Masalimov, Z. (2021). ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiologiae Plantarum, 43, 1-12.

Zhang, Z., Li, F., Li, D., Zhang, H., & Huang, R. (2010). Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta, 232, 765-774.

Zhou, M. X. (2010). Barley production and consumption. Genetics and improvement of barley malt quality, 1-17.

Zivcak, M., Brestic, M., & Sytar, O. (2016). Osmotic adjustment and plant adaptation to drought stress. Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry, 105-143.

Downloads

Publicado

21/07/2023

Como Citar

ROLIM, J. M. .; MARTINS, A. C. .; ROSA, C. P. da .; BARBOSA, B. S. .; MARTINAZZO, E. G. .; PEDÓ, T.; AUMONDE, T. Z. . Desempenho fisiológico e bioquímico de cultivares de cevada sob estresse por restrição hídrica em diferentes temperaturas. Research, Society and Development, [S. l.], v. 12, n. 7, p. e11212741738, 2023. DOI: 10.33448/rsd-v12i7.41738. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41738. Acesso em: 21 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas