Biodegradação de Hidrocarbonetos Policíclicos Aromáticos (HPAs) por Diutina mesorugosa isolada na Amazônia, Brasil

Autores

DOI:

https://doi.org/10.33448/rsd-v12i8.42968

Palavras-chave:

Diutina mesorugosa; HPAs; DCPIP; GC-MS.

Resumo

Existe uma demanda por novos microrganismos com potencial para degradar compostos recalcitrantes do petróleo, como os hidrocarbonetos policíclicos aromáticos (HPAs). O objetivo desta pesquisa foi avaliar o potencial da cepa AM15 isolada de amostras de água do dique de efluente da Província Petrolífera de Urucu, para degradar uma mistura de HPAs. Após o isolamento em meio de cultura, e triagem inicial pela coloração de Gram, constatou-se que se trata de uma levedura. A caracterização da cepa foi realizada por análises baseadas nas sequências das regiões polimórficas ITS1/ITS2 e D1/D2 do gene 28S rRNA, concomitante com o polimorfismo do tamanho do fragmento de restrição, gerado pela Reação em Cadeia da Polimerase-Polimorfismo do Comprimento do Fragmento de Restrição (PCR-RFLP). A capacidade da levedura para degradar compostos do petróleo foi determinada pelo teste com o indicador redox 2,6-Diclorofenol Indofenol (DCPIP), e a degradação foi confirmada por análises de cromatografia gasosa e espectrometria de massa (GC-MS). As análises moleculares indicaram que a cepa AM15 pertence à espécie Diutina mesorugosa. Os resultados obtidos no teste realizado com DCPIP demonstrou que a cepa AM15 apresenta potencial para degradar hidrocarbonetos presentes no petróleo e no óleo diesel. As análises de GC-MS confirmaram que a cepa AM15 foi capaz de degradar 79,4% de uma mistura de HPAs em 21 dias. Esses resultados sugerem que D. mesorugosa AM15 é promissora para degradar diferentes tipos de hidrocarbonetos, podendo ser utilizada como ferramenta na biorremediação de áreas impactadas com petróleo.

Referências

Boz, D. T., Yalçın,, H. T., Çorbacı, C., & Uçar, F. B. (2015). Screening and molecular characterization of polycyclic aromatic hydrocarbons degrading yeasts. Turkish Journal of Biochemistry, 40(2),105–110. https://doi.org/10.5505/tjb.2015.16023.

Chaves, G. M., Arioli, G. R. T. E. R. Ç., Padovan, A. N. A. C. B., Rosas, R. C., Ferreira, R. C., Melo, A. S. A., & Colombo, A. L. (2013). Candida mesorugosa sp. nov., a novel yeast species similar to Candida rugosa, isolated from a tertiary hospital in Brazil. Medical Mycology, 51(April), 231–242. https://doi.org/10.3109/13693786.2012.710345.

Li, Chongshu, Cui, Changzheng, Zhang, Jie, Shen, Jing, He, Baoyan, Long, Yan, Ye, Jinshao. (2023) Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. Ecotoxicology and Environmental Safety, Volume 253. https://doi.org/10.1016/j.ecoenv.2023.114673.

Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810.

Farag, S., & Soliman, N. a. (2011). Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Brazilian Archives of Biology and Technology, 54(4), 821–830. https://doi.org/10.1590/S1516-89132011000400023.

Fell, J. W. (1993). Rapid identification of yeast species using three primers in polymerase chain reaction.Mol. Mol Mar. Biology and Biotech., 2(3), 174–180.

Felisardo, R. J. A., & Gonçalves, A. de A. (2023). Biodegradation and biotransformation of petroleum hydrocarbons: progress, prospects, and challenges. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 27, e1. https://doi.org/10.5902/2236117069288.

Ferrari, B. C., Zhang, C., & van Dorst, J. (2011). Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-antarctic soil through cultivation using both a high and a low nutrient media approach. Frontiers in Microbiology, 2(NOV), 1–14. https://doi.org/10.3389/fmicb.2011.00217.

Gargouri, B., Mhiri, N., Karray, F., Aloui, F., & Sayadi, S. (2015). Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater. BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/929424.

Hanson, K. G., Desai,, J. D., & Desai, A. J. (1993). a Rapid and Simple Screening Crude Oil Degrading Technique for Potential Microorganisms. Biotechnology Techniques, 7(1), 745–748.

Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1–3), 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137.

Hesham, A. E., Alamri, S. A., Khan, S., Mahmoud, M. E., & Mahmoud, M. (2009). Isolation and molecular genetic characterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. African Journal Od Biotechnology, 8(10), 2218–2223. https://doi.org/10.5897/AJB09.016.

Hesham, A. E. L., Wang, Z., Zhang, Y., Zhang, J., Lv, W., & Yang, M. (2006). Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Annals of Microbiology, 56(2), 109–112. https://doi.org/10.1007/BF03174990.

Joo, H. S., Ndegwa, P. M., Shoda, M., & Phae, C. G. (2008). Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environmental Pollution, 156(3), 891–896. https://doi.org/10.1016/j.envpol.2008.05.026.

Junior, J. S., Mariano, A. P., & Angelis, D. D. F. De. (2009). Biodegradation of biodiesel/diesel blends by Candida viswanathii. African Journal of Biotechnology, 8(12), 2774–2778. https://doi.org/10.5897/AJB09.238.

Kanwal, Maheen, Ullah,Hayat, Gulzar, Aasma, Sadiq, Tehmina, Gul, Zarif, Ullah, Munzer, Sarfraz, Maliha, Aslam, Muhammad Waseem, Khan, Nida Nasir, Batool, Tayyaba, Maqsood, Saman, Nawaz, Ayesha. (2022). Biodegradation of Petroleum Hydrocarbons and The Factors Effecting Rate of Biodegradation. Am J Biomed Sci & Res. 16(1). https://doi.org/10.34297/AJBSR.2022.16.002182.

Khunnamwong P., Lertwattanasakul N, Jindamorakot S, Limtong S, Lachance MA. (2015). Description of Diutina gen. nov., Diutina siamensis, f.a. sp. nov., and reassignment of Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida ranongensis, Candida rugosa and Candida scorzettiae to the genus Diutina. Int J Syst Evol Microbiol., 65(12):4701-4709. https://doi:10.1099/ijsem.0.000634.

Lima, J. M. (2016). Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. African Journal of Biotechnology, 15(24), 1217–1223. https://doi.org/10.5897/AJB2015.15131.

Luz, C. C., Santos, E. A., Santos, M. O. S., Mussy, M. Y., Yamashita, M., Bastos, W. R., & Reis, M. G. (2011). Estudos de biodegradação de óleo diesel por consorcio microbiano coletado em Porto Velho- Ro, Amazônia. Quimica Nova, 34(5), 775–779. https://doi.org/10.1590/S0100-40422011000500009.

MacGillivray, a. R., & Shiaris, M. P. (1993). Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Applied and Environmental Microbiology, 59(5), 1613–1618.

Mariano, A. P., Tomasella, R. C., Oliveira, L. M. De, Conteiro, J., & Angelis, D. D. F. De. (2008). Biodegradability of diesel and biodiesel blends. African Journal of Biotechnology, 7(9), 1323–1328.

Ming CHUNYAN, Huang Jin, Wang Yanyan, Lv Qian Lv, Zhou Bing, Taohua Liu1, Yu Cao, Bert Gerrits van den Ende5, Al-Hatmi Abdullah M. S. Al-Hatmi, Ahmed Sarah A. Ahmed, Huang Guanghua, Bai Fengyan, Hoog Sybren de, Kang Yingqian. (2019). Revision of the medically relevant species of the yeast genus Diutina. Medical Mycology,57, 226-233. https://doi:10.1093/mmy/mmy001.

Miranda, R. D. C., De Souza, C. S., Gomes, E. D. B., Lovaglio, R. B., Lopes, C. E., & Sousa, M. D. F. V. D. Q. (2007). Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the State of Pernambuco -Brazil. Brazilian Archives of Biology and Technology, 50(1), 147–152. https://doi.org/10.1590/S1516-89132007000100018.

Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Current Microbiology, 43(5), 328–335. https://doi.org/10.1007/s002840010311.

Mota, A. J., & Nobrega, F. G. (2013). Unequivocal Identification of Fungi , Especially Candida and Related Species of Medical Interest. Journal of Medical Diagnostic Methods, 2(5)1-13. https://doi.org/10.4172/2168-9784.1000142.

Olajire, A. A., & Essien, J. P. (2014). Aerobic Degradation of Petroleum Components by Microbial Consortia. Journal of Petroleum & Environmental Biotechnology, 5(5), 1–22. https://doi.org/10.4172/2157-7463.1000195.

Palittapongarnpim, M., Pokethitiyook, P., Upatham, E. S., & Tangbanluekal, L. (1998). Biodegradation of crude oil by soil microorganisms in the tropic. Biodegradation, 9(2), 83–90. https://doi.org/10.1023/A:1008272303740.

Passarini, M. R. Z., Sette, L. D., & Rodrigues, M. V. N. (2011). Improved extraction method to evaluate the degradation of selected PAHs by marine fungi grown in fermentative medium. Journal of the Brazilian Chemical Society, 22(3), 564–570. https://doi.org/10.1590/S0103-50532011000300022

Peixoto, F. B. Sabóia, Peixoto, J. C. C., Assunção, E. N., Peixoto, E. M., Pereira, J. O., & Astolfi-Filho, S. (2017) Biodegradação do petróleo e co-resistência a antibióticos pela cepa Serratia marcescens isolada em Coari, Amazonas. Acta Scientiarum, 39(4), 489-496. https://doi.org/10.4025/actascibiolsci.v39i4.36223.

Peixoto, F. B. Sabóia., Peixoto, J. C. C., Motta, D.C.L, Peixoto, A.T.M , Pereira, J. O., & Astolfi-Filho, S. (2018). Assessment of petroleum biodegradation for Bacillus toyonensis by the using redox indicator 2,6 dichlorophenol indophenol. Acta Scientiarum - BiologicalSciences, v.40, e35640. https://doi:10.4025/actascibiolsci.v40il.35640.

Romero, M. C., Cazau, M. C., Giorgieri, S., & Arambarri, A. M. (1998). Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental Pollution, 101(3), 355–359. https://doi.org/10.1016/S0269-7491(98)00056-6.

Schippers, C., Geßner, K., Müller, T., & Scheper, T. (2000). Microbial degradation of phenanthrene by addition of a sophorolipid mixture. Journal of Biotechnology, 83(3), 189–198. https://doi.org/10.1016/S0168-1656(00)00304-7.

Sood, N., Lal, B., & Asn, T. (2009). Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions. Journal of Environmental Management, 90(5), 1728–1736. https://doi.org/10.1016/j.jenvman.2008.11.026.

Stapleton, R. D., Savage, D. C., Sayler, G. S., & Stacey, G. (1998). Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Applied and Environmental Microbiology, 64(11), 4180–4184. https://doi.org/10.1128/AEM.64.11.4180-4184.1998

Ting, W. T. E., Yuan, S. Y., Wu, S. D., & Chang, B. V. (2011). Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. International Biodeterioration and Biodegradation, 65(1), 238–242. https://doi.org/10.1016/j.ibiod.2010.11.007.

Vasconcelos, Ulrich, F. P. de. Françal, Fernando J. S. Oliveira (2011). Removal of high-molecular weight polycyclic aromatic hydrocarbons. Quimica Nova, 34(2), 218–221. https://doi.org/10.1590/S0100-40422011000200009

White, T. J., Bruns, S., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H. and Sninsky, J.J., Eds., PCR Protocols: A Guide to Methods and Applications, Academic Press Inc., New York, 315-322.

https://doi.org/10.1016/b978-0-12-372180-8.50042-1.

Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., & Okuyama, H. (2004). Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Current Microbiology, 49(6), 415–422. https://doi.org/10.1007/s00284-004-4347-y.

Zinjarde, S. S., & Pant, A. A. (2002). Hydrocarbon degraders from tropical marine environments, Marine Pollution Bulletin, 44(2002) 118–121. https://doi.org/10.1016/S0025-326X(01)00185-0.

Downloads

Publicado

30/08/2023

Como Citar

PEIXOTO, F. B. S. .; PEIXOTO, J. C. da C. .; MOTA, A. J. .; BARROSO , H. dos S. .; ASSUNÇÃO, E. N. de .; BATISTA, I. H. .; SANTOS, S. F. .; PEREIRA , J. O. .; ASTOLFI-FILHO, S. . Biodegradação de Hidrocarbonetos Policíclicos Aromáticos (HPAs) por Diutina mesorugosa isolada na Amazônia, Brasil. Research, Society and Development, [S. l.], v. 12, n. 8, p. e16212842968, 2023. DOI: 10.33448/rsd-v12i8.42968. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/42968. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas