Níveis de inclusão de farinha de inseto (Tenebrio molitor) em dietas de tilápia do Nilo em tanques de recirculação
DOI:
https://doi.org/10.33448/rsd-v12i10.43276Palavras-chave:
Alimentos alternativos; Farinha de inseto; Nutrição animal.Resumo
Este trabalho foi realizado com o objetivo de determinar níveis de inclusão de farinha de larvas de tenébrio (FLT) na alimentação de alevinos de tilápia do Nilo (Oreochromis Niloticus). Foram utilizados 225 alevinos de tilápia (0,61±0,12 g), distribuídos em 15 tanques (30 L) instalados em um sistema de recirculação de água (RAS), com um delineamento inteiramente casualizado, com cinco tratamentos (cinco níveis de inclusão 0% ou controle, 5, 10, 15 e 20% de FLT) e três repetições. As taxas de arraçoamento foram definidas a partir das biometrias semanais e realizado monitoramento periódico dos parâmetros físico-químicos da água. Foram aplicados modelos de regressão até a segunda ordem. Os parâmetros físico-químicos da água durante o experimento foram adequados para a espécie. Não houve diferença entre os níveis de inclusão para peso final, ganho de peso, consumo de ração, sobrevivência, produtividade, fator de condição, índice hepatossomático. A inclusão de FLT na alimentação de alevinos de tilápia do Nilo ocasionou aumento linear na conversão alimentar aparente. Houve efeito linear crescente para índice viscerossomático. Sugere-se um limite máximo de inclusão de FLT na dieta de alevinos de tilápia de 15% (em sistemas RAS) devido à presença de fatores antinutricionais como a quitina.
Referências
Arana, L. A. V. (2010). Qualidade da água em aquicultura: princípios e práticas. Ed. da UFSC.
Araujo, D. D. M., Pezzato, A. C., Barros, M. M., Pezzato, L. E., & Nakagome, F. K. (2011). Hematologia de tilápias-do-Nilo alimentadas com dietas com óleos vegetais e estimuladas pelo frio. Pesquisa Agropecuária Brasileira, 46, 294-302.
Atayde, H. M., Oliveira, I. M. A., Inhamuns, A. J., & Teixeira, M. F. S. (2014). Fungos toxigênicos e micotoxinas na alimentação de peixes: uma revisão. Scientia Amazonia, 3(3), 59-71.
Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422, 193-201.
Belforti, M., Gai, F., Lussiana, C., Renna, M., Malfatto, V., Rotolo, L., De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I.; Gasco, L. (2015). Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Italian Journal of Animal Science, 14(4), 4170.
Biancarosa, I., Sele, V., Belghit, I., Ørnsrud, R., Lock, E. J., & Amlund, H. (2019). Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Additives & Contaminants: Part A, 36(8), 1191-1205.
Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1(5), 301-308.
Desai, A. R., Links, M. G., Collins, S. A., Mansfield, G. S., Drew, M. D., Van Kessel, A. G., & Hill, J. E. (2012). Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture, 350, 134-142.
Diener, S., Zurbrügg, C., & Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research, 27(6), 603-610.
El‐Sayed, A. F. M. (2006). Tilapia culture (p. 274). CABI publishing, CABI International.
Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.
Ezewudo, B. I., Monebi, C. O., & Ugwumba, A. A. A. (2015). Production and utilization of Musca domestica maggots in the diet of Oreochromis Niloticus (Linnaeus, 1758) fingerlings. African Journal of Agricultural Research, 10(23), 2363-2371.
Fialho, A. T. S., Silva, A. S., Brito, C. O., Vale, P. A. C. B., Oliveira, C. J. P., & Ribeiro Junior, V. (2021). Nutritional composition of larvae of mealworm (Tenebrio molitor L.) and crickets (Gryllus assimilis) with potential usage in feed. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73, 539-542.
Fontes, T. V., de Oliveira, K. R. B., Gomes Almeida, I. L., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & Rosa, P. V. E. (2019). Digestibility of insect meals for Nile tilapia fingerlings. Animals, 9(4), 181.
Freccia, A., Meurer, E. S., Jerônimo, G. T., & Emerenciano, M. G. C. (2016). Farinha de inseto em dietas de alevinos de tilápia. Archivos de zootecnia, 65(252), 541-547.
Furuya, W. M., Pezzato, L. E., Barros, M. M., Boscolo, W. R., Cyrino, J. E. P., Furuya, V. R. B., & Feiden, A. (2010). Tabelas brasileiras para a nutrição de tilápias.
Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, hole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220, 34-45.
Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology, 203, 1-22.
Howe, E. R., Simenstad, C. A., Toft, J. D., Cordell, J. R., & Bollens, S. M. (2014). Macroinvertebrate prey availability and fish diet selectivity in relation to environmental variables in natural and restoring north San Francisco bay tidal marsh channels. San Francisco Estuary and Watershed Science, 12(1).
Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., & Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329.
Kubitza, F. (2000). Tilápia: tecnologia e planejamento na produção comercial. Ed. do Autor.
Mente, E., Bousdras, T., Feidantsis, K., Panteli, N., Mastoraki, M., Kormas, K. A., Chatzifotis, S., Piccolo, G., Gasco, L., Gai, F., Martin, S. A. M. & Antonopoulou, E. (2022). Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species. Scientific Reports, 12(1), 121.
Meurer, F., Hayashi, C., & Boscolo, W. R. (2003). Digestibilidade aparente de alguns alimentos protéicos pela tilápia do Nilo (Oreochromis Niloticus). Revista Brasileira de Zootecnia, 32, 1801-1809.
Ogunji, J. O., Kloas, W., Wirth, M., Neumann, N., & Pietsch, C. (2008). Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis Niloticus fingerlings. Journal of Animal Physiology and Animal Nutrition, 92(4), 511-518.
Oonincx, D. G., & De Boer, I. J. (2012). Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS one, 7(12), e51145.
Palomba, A., Melis, R., Biosa, G., Braca, A., Pisanu, S., Ghisaura, S., Caimi, C., Biasato, I., Oddon, S. B., Gasco, L., Terova, G., Moroni, F., Antonini M., Pagnozzi, D. & Anedda, R. (2022). On the Compatibility of Fish Meal Replacements in Aquafeeds for Rainbow Trout. A Combined Metabolomic, Proteomic and Histological Study. Frontiers in Physiology, 13, 920289.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.
Rawski, M., Mazurkiewicz, J., Kierończyk, B., & Józefiak, D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10(11), 2119.
Sánchez‐Muros, M., De Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis Niloticus) diet. Aquaculture Nutrition, 22(5), 943-955.
Santos, E. L., Ludke, M. C. M. M., Barbosa, J. M., Rabello, C. B. V., Ludke, J. V., Winterle, W. D. M., & Silva, E. D. (2009). Níveis de farelo de coco em rações para alevinos de tilápia do Nilo. Revista Brasileira de Saúde e Produção Animal, 10(2), 390-397.
Shiau, S. Y., & Yu, Y. P. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis Niloticus x O. aureus. Aquaculture, 179(1-4), 439-446.
Silva, D.J.; Queiroz, A.C. (2002) Análise de alimentos: métodos químicos e biológicos. (3a ed.), Universidade Federal de Viçosa, 235.
Sokal, R.; Rohlf, J. Biometry, the principles and practice of statistics in biological research. W H Freeman, New York, 1995.
Tanaka, Y., Tanioka, S. I., Tanaka, M., Tanigawa, T., Kitamura, Y., Minami, S., Nanno, M. (1997). Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials, 18(8), 591-595.
Tubin, J. S. B., Paiano, D., de Oliveira Hashimoto, G. S., Furtado, W. E., Martins, M. L., Durigon, E., & Emerenciano, M. G. C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519, 734763.
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58, 563-583.VAN HUIS, A. 2013 Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58(1): 563-583.
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security (n. 171). Food and agriculture organization of the United Nations.
Whitley, S. N., & Bollens, S. M. (2014). Fish assemblages across a vegetation gradient in a restoring tidal freshwater wetland: diets and potential for resource competition. Environmental biology of fishes, 97, 659-674.
Zarantoniello, M., Randazzo, B., Secci, G., Notarstefano, V., Giorgini, E., Lock, E. J., Parisi, G. & Olivotto, I. (2022). Application of laboratory methods for understanding fish responses to black soldier fly (Hermetia illucens) based diets. Journal of Insects as Food and Feed, 8(11), 1173-1195.
Zhang, L., Wu, H. X., Li, W. J., Qiao, F., Zhang, W. B., Du, Z. Y., & Zhang, M. L. (2023). Partial replacement of soybean meal by yellow mealworm (Tenebrio molitor) meal influences the flesh quality of Nile tilapia (Oreochromis Niloticus). Animal Nutrition, 12, 108-115.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Jiovani Sergio Bee Tubin; Elias Wiggers Boeing; Jonis Baesso Ghizzo; André Freccia; Maurício Gustavo Coelho Emerenciano
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.