Caracterização estrutural e funcional das HSP70 no genoma do feijão comum (Phaseolus vulgaris): Uma análise in silico
DOI:
https://doi.org/10.33448/rsd-v12i12.44073Palavras-chave:
Caracterização estrutural; Feijão comum; Proteína de choque térmico.Resumo
O feijão comum (Phaseolus vulgaris L.) é a leguminosa mais importante em todo o mundo, com produção global estimada em 26,8 milhões de toneladas métricas em 2016, além de ser cultivado por suas vagens verdes, bem como por suas sementes secas. As plantas, de uma maneira geral, respondem a estresses ambientais com uma série de mecanismos de adaptação fisiológica e molecular. As proteínas de choque térmico (HSPs) são proteínas protetoras contra uma ampla gama de condições de estresse bióticos e abióticos e são proteínas altamente conservadas que ocorrem em todos os organismos na natureza. Foi demonstrado pela primeira vez que as HSP70 eram induzidas por altas temperaturas, mas nos últimos anos elas foram consideradas como proteínas responsivas ao estresse geral, que são induzidas por muitas condições de estresse abiótico. Outros estudos verificaram que as HSP70s são altamente expressas sob condições de calor, frio e estresse por seca. Sendo assim, o aumento da tolerância devido à alta expressão de HSP70s foi demonstrado em algumas espécies de plantas. Diversas ferramentas computacionais têm sido utilizadas para uma ampla análise do genoma in silico têm sido utilizadas para identificação de novas proteínas e genes. Embora as tecnologias ômicas tenham se tornado significativamente populares, são poucos os estudos sobre identificação e caracterização da HSP70 em Phaseolus vulgaris. Portanto, o objetivo do presente estudo foi realizar uma caracterização estrutural e identificação das HSP70 em Phaseolus vulgaris utilizando métodos computacionais de genoma amplo, sendo elas: análise fenética, análise de potencial alergênico e modelagem tridimensional das sequências.
Referências
of Farm Sciences, 6, 1–5. https://www.indianjournals.com/ijor.aspx?target=ijor:ijfs&volume=6&issue=4&article=001.
Ahuja I., de Vos R. C., Bones A. M., & Hall R. D. (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674. 10.1016/j.tplants.2010.08.002.
Aki, T., Fujikawa, A., Wada, T., Jyo, T., Shigeta, S., Murooka, Y., & Ono, K. (1994). Cloning and expression of cDNA coding for a new allergen from the house dust mite, Dermatophagoides farinae: homology with human heat shock cognate proteins in the heat shock protein 70 family. The Journal of Biochemistry, 115(3), 435-440.
Alvim F. C., Carolino S. M., Cascardo J. C., Nunes C. C., Martinez C. A., Otoni W. C., & Fontes E. P. (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126(3):1042–1054. 10.1104/pp.126.3.1042.
Anisimova, O. K., Kochieva, E. Z., Shchennikova, A. V., & Filyushin, M. A. (2022). Thaumatin-like protein (TLP) genes in garlic (Allium sativum L.): Genome-wide identification, characterization, and expression in response to Fusarium proliferatum infection. Plants, 11(6), 748.
Assefa, T., Assibi Mahama, A., Brown, A. V., Cannon, E. K., Rubyogo, J. C., Rao, I. M., & Cannon, S. B. (2019). A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Molecular Breeding, 39, 1-23.
Barre, A., Sénéchal, H., Nguyen, C., Granier, C., Poncet, P., & Rougé, P. (2023). Structural Basis for the IgE-Binding Cross-Reacting Epitopic Peptides of Cup s 3, a PR-5 Thaumatin-like Protein Allergen from Common Cypress (Cupressus sempervirens) Pollen. Allergies, 3(1), 11-24.
Blair, M. W. (2013). Mineral biofortification strategies for food staples: the example of common bean. Journal of agricultural and food chemistry, 61(35), 8287-8294.
Boubakri, H., Chihaoui, S. A., Najjar, E., Barhoumi, F., & Jebara, M. (2022). Comprehensive identification, evolutionary patterns and the divergent response of PRX genes in Phaseolus vulgaris under biotic and abiotic interactions. 3 Biotech, 12(8), 175.
Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.)–model food legumes. Plant and soil, 252, 55-128.
Buruchara, R., Chirwa, R., Sperling, L., Mukankusi, C., Rubyogo, J. C., Mutonhi, R., & Abang, M. M. (2011). Development and delivery of bean varieties in Africa: the Pan-Africa Bean Research Alliance (PABRA) model. African crop science journal, 19(4), 227-245.
Cashikar A.G., Duennwald M., & Lindquist S.L. (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280(25):23869–23875. 10.1074/jbc.M502854200.
Chen, M., Xu, J., Devis, D., Shi, J., Ren, K., Searle, I., & Zhang, D. (2016). Origin and functional prediction of pollen allergens in plants. Plant physiology, 172(1), 341-357.
Chuang, J. G., Su, S. N., Chiang, B. L., Lee, H. J., & Chow, L. P. (2010). Proteome mining for novel IgE‐binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics, 10(21), 3854-3867.
Costa, J., Mafra, I., Carrapatoso, I., & Oliveira, M. B. P. (2016). Hazelnut allergens: Molecular characterization, detection, and clinical relevance. Critical reviews in food science and nutrition, 56(15), 2579-2605.
Costa, J., Villa, C., Verhoeckx, K., Cirkovic-Velickovic, T., Schrama, D., Roncada, P., & Holzhauser, T. (2022). Are physicochemical properties shaping the allergenic potency of animal allergens? Clinical Reviews in Allergy & Immunology, 62(1), 1-36.
Daugaard M., Rohde M., & Jaattela M. (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19):3702–3710. 10.1016/j.febslet.2007.05.039
Frydman J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647. 10.1146/annurev.biochem.70.1.603
Guo, W., Zhan, X., Jiang, F., & Xi, Y. (2021). Analysis of allergen components and identification of bioactivity of HSP70 in pollen of Populus deltoides. Proteome science, 19, 1-14.
Guo, Z., Li, Y., & Ding, S. W. (2019). Small RNA-based antimicrobial immunity. Nature Reviews Immunology, 19(1), 31-44.
Hao, M., Xijiri, Zhao, Z., & Che, H. (2022). Identification of allergens in white-and red-fleshed pitaya (Selenicereus undatus and Selenicereus costaricensis) seeds using bottom-up proteomics coupled with immunoinformatics. Nutrients, 14(9), 1962.
Hirano, K., Hino, S., Oshima, K., Nadano, D., Urisu, A., Takaiwa, F., & Matsuda, T. (2016). Evaluation of allergenic potential for rice seed protein components utilizing a rice proteome database and an allergen database in combination with IgE-binding of recombinant proteins. Bioscience, Biotechnology, and Biochemistry, 80(3), 564-573.
Jain, M., Amera, G. M., Muthukumaran, J., & Singh, A. K. (2022). Insights into biological role of plant defense proteins: A review. Biocatalysis and Agricultural Biotechnology, 40, 102293.
Jiang, L., Hu, W., Qian, Y., Ren, Q., & Zhang, J. (2021). Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene, 770, 145348.
Kajander, T., Sachs, J. N., Goldman, A., & Regan, L. (2009). Electrostatic interactions of Hsp-organizing protein tetratricopeptide domains with Hsp70 and Hsp90: computational analysis and protein engineering. Journal of Biological Chemistry, 284(37), 25364-25374.
Kesici, M., Ipek, A., Ersoy, F., Ergin, S., & Gülen, H. (2020). Genotype-dependent gene expression in strawberry (Fragaria x ananassa) plants under high temperature stress. Biochemical genetics, 58, 848-866.
Kumar, M., Tomar, M., Potkule, J., Punia, S., Dhakane-Lad, J., Singh, S., & Kennedy, J. F. (2022). Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids, 123, 106986.
Li, Z., & Srivastava, P. (2004). Heat-shock proteins. Current protocols in immunology, Appendix 1. https://doi.org/10.1002/0471142735.ima01ts58.
Liu, J., Han, D., & Shi, Y. (2019). Gene cloning, expression, and antifungal activities of permatin from naked oat (Avena nuda). Probiotics and antimicrobial proteins, 11, 299-309.
Liu, Q., Liang, C., & Zhou, L. (2020). Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Science, 29(2), 378-390.
Liu, X., Chen, H., Li, S., & Wang, L. (2022). Genome-wide identification of the Hsp70 gene family in grape and their expression profile during abiotic stress. Horticulturae, 8(8), 743.
Marcus, J. (2013). Protein Basics: Animal and vegetable proteins in food and health. Culinary nutrition, 189-230.
Panzade, K. P. et al. (2021) Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress and Chaperones, 26(2), 341-353
Masand S., & Yadav S.K. (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43(2):53–64. 10.1007/s11033-015-3938-y.
Musidlak, O., Nawrot, R., & Goździcka-Józefiak, A. (2017). Which plant proteins are involved in antiviral defense? Review on in vivo and in vitro activities of selected plant proteins against viruses. International Journal of Molecular Sciences, 18(11), 2300.
Naikoo, G. A., Mustaqeem, M., Hassan, I. U., Awan, T., Arshad, F., Salim, H., & Qurashi, A. (2021). Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. Journal of Saudi Chemical Society, 25(9), 101304.
Richter, K., Haslbeck, M., & Buchner. J. (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266. 10.1016/j.molcel.2010.10.006.
Rosenzweig, R., Nillegoda, N. B., Mayer, M. P., & Bukau, B. (2019). The Hsp70 chaperone network. Nature reviews molecular cell biology, 20(11), 665-680.
Salas, C. E., Badillo-Corona, J. A., Ramírez-Sotelo, G., & Oliver-Salvador, C. (2015). Biologically active and antimicrobial peptides from plants. BioMed research international, 2015.
Sarkar, N.K., Kim, Y.K., & Grover, A. (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genom 10:393. DOI: 10.1186/1471-2164-10-393.
Shevchenko, M., Servuli, E., Albakova, Z., Kanevskiy, L., & Sapozhnikov, A. (2021). The role of heat shock protein 70 kDa in asthma. Journal of Asthma and Allergy, 757-772.
Tabassum, R., Dosaka, T., Ichida, H., Morita, R., Ding, Y., Abe, T., & Katsube‐Tanaka, T. (2020). FLOURY ENDOSPERM11‐2 encodes plastid HSP70‐2 involved with the temperature‐dependent chalkiness of rice (Oryza sativa L.) grains. The Plant Journal, 103(2), 604-616.
Tabusam, J., Shi, Q., Feng, D., Zulfiqar, S., Shen, S., Ma, W., & Zhao, J. (2022). HSP70 gene family in Brassica rapa: Genome-wide identification, characterization, and expression patterns in response to heat and cold stress. Cells, 11(15), 2316.
Timperio, A.M., Egidi, M.G., & Zolla, L. (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J proteom 71(4):391–411. DOI: 10.1016/j.jprot.2008.07.005.
Tiroli-Cepeda, A. O., Lima, T. B., Balbuena, T. S., Gozzo, F. C., & Ramos, C. H. (2014). Structural and functional characterization of the chaperone Hsp70 from sugarcane. Insights into conformational changes during cycling from cross-linking/mass spectrometry assays. Journal of proteomics, 104, 48-56.
Tomiczek, B., Delewski, W., Nierzwicki, L., Stolarska, M., Grochowina, I., Schilke, B., & Marszalek, J. (2020). Two-step mechanism of J-domain action in driving Hsp70 function. PLoS Computational Biology, 16(6), e1007913.
Verhoeckx, K., Broekman, H., Knulst, A., & Houben, G. (2016). Allergenicity assessment strategy for novel food proteins and protein sources. Regulatory Toxicology and Pharmacology, 79, 118-124.
Wang, H., Dong, Z., Chen, J., Wang, M., Ding, Y., Xue, Q., & Ding, X. (2022). Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale. Frontiers in Plant Science, 13, 979801.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244–252. DOI: 10.1016/j.tplants.2004.03.006.
Wegele, H., Müller, L., & Buchner, J. (2004). Hsp70 and Hsp90—a relay team for protein folding. Reviews of physiology, biochemistry and pharmacology, 1-44.
Yu, X., Mo, Z., Tang, X., Gao, T., & Mao, Y. (2021). Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): Identification, characterization and expression profiles in response to dehydration stress. BMC Plant Biology, 21, 1-14.
Zhou, S.J., Jing, Z., & Shi, J.L. (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet mol res 12(4):6565–6578. 10. 4238/2013.December.11.8.
Zhou, X., Su, L., Tang, R., Dong, Y., Wang, F., Li, R., & Li, H. (2023). Genome-wide analysis of Hsp40 and Hsp70 gene family in four cotton species provides insights into their involvement in response to Verticillium dahliae and abiotic stress. Frontiers in Genetics, 14, 1120861.
Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science (New York, N.Y.), 272(5268), 1606–1614. 10.1126/science.272.5268.1606.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Maria Letícia Pereira Aquino; Dalton Ferreira Matos; Genesio José do Amaral Ramos; José Alfredo dos Santos Júnior; José Valdemilson dos Santos Silva; Delma Holanda de Almeida
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.