Biorremediação de águas residuais de rios urbanos usando a microalga Chlorella vulgaris para geração de biomassa com potencial na produção de biodiesel
DOI:
https://doi.org/10.33448/rsd-v9i7.4882Palavras-chave:
Biodiesel; conteúdo lipídico; microalgas; águas residuais de rios urbanos; energia renovável.Resumo
A produção de biocombustíveis através da biomassa de microalgas representa uma nova geração de matérias-primas a partir de fontes renováveis para atender as necessidades da sociedade e a crescente inserção no mercado de combustíveis de produtos que possam conceder ao planeta um futuro sustentável. O presente estudo avalia a biomassa obtida da microalga Chlorella vulgaris quando cultivada em águas residuais urbanas, extraindo os lipídios da biomassa e realizando a análise por cromatografia em fase gasosa da composição dos Ésteres Metílicos de Ácido Graxo (EMAG) após a submissão dos lipídios pelo processo de transesterificação. O cultivo de microalgas foi monitorado através da análise de clorofila (a) e o maior crescimento celular foi de 845,8 µg L-1, utilizando águas residuais urbanas como meio de crescimento. Os nutrientes de interesse foram monitorados quanto à concentração primária de 8,06 ± 0,06 mg L-1 de nitrogênio amoniacal, 12,27 ± 0,27 mg L-1 de nitrato e 21,22 ± 0,85 mg L-1 de fosfato, reduzindo cerca de 99% do nitrogênio e nitrato amoniacal, juntamente com a redução de 87% de fosfato. A constituição lipídica extraída de 3,7 g de biomassa seca de Chlorella vulgaris após o cultivo em águas residuais urbanas foi de 7,7%. Os lipídios extraídos da biomassa de Chlorella vulgaris são adequados para a produção de biodiesel em relação às quantidades de EMAG identificados, após a análise realizada juntamente com a comparação dos resultados obtidos com outros estudos e a avaliação de hipóteses.
Referências
American Public Health Association (APHA) (2012). Standard Methods for Examination of Water and Wastewater, Washington (USA). Ed. 22ª.
American Society for Testing and Materials (ASTM) (2005). Standard Guide for Displaying Results of Chemical Analyses of Groundwater for Major Ions and Trace Elements - Diagrams Based on Data Analytical Calculations (Withdrawn 2014). ASTM D5877-95
Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M. C., & Perales, J. A. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 24, 477–485. https://doi.org/10.1016/j.algal.2017.02.006
Andrade, D. S., Telles, T. S., & Leite Castro, G. H. (2020). The Brazilian microalgae production chain and alternatives for its consolidation. Journal of Cleaner Production, 250, 119526. https://doi.org/10.1016/j.jclepro.2019.119526
Benedito, V. M., Porto, P. S. S., Freitas, R. R. (2019). Modelagem do crescimento de microalgas: Um estudo bibliométrico. Research, Society and Development. 8(1), 1 - 18. http://dx.doi.org/10.33448/rsd-v8i1.511
Cardoso, C. K. M., Cardoso, R. P. G. & Moreira, I. T. A. (2017). Avaliação de Sorventes Naturais para Remediação de Petróleo Derramado em Águas Marinhas Costeiras: O Estado da Arte e um Estudo de Caso Aplicado. Seminário Estudantil de Produção Acadêmica, 16, 178.
Cardoso, C. K. M., Santana, R. S. G., Silva, V. L., Meirelles, A. C. L. E., Mattedi, S., Lobato, A. K. C. L., & Moreira, I. T. A. (2020). A Kinetic and equilibrium study of petroleum adsorption using pre-treated coconut fibers. Research, Society and Development, 9 (7) 01 - 31. http://dx.doi.org/10.33448/rsd-v9i7.4413
Carneiro, G. A., Silva, J. R., Oliveira, G. A., Pio, F. P. B. (2018). Uso de microalgas para produção de biodiesel. Research, Society and Development, 7 (5) 01 - 12.
Cheah, W. Y., Ling, T. C., Show, P. L., Juan, J. C., Chang, J. S., & Lee, D. J. (2016). Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 179, 609–625. https://doi.org/10.1016/j.apenergy.2016.07.015
Daneshvar, E., Zarrinmehr, M. J., Koutra, E., Kornaros, M., Farhadian, O., & Bhatnagar, A. (2019). Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Bioresource Technology, 273(October 2018), 556–564. https://doi.org/10.1016/j.biortech.2018.11.059
Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003
Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production, 253, 119770. https://doi.org/10.1016/j.jclepro.2019.119770
Dickinson, S., Mientus, M., Frey, D., Amini-Hajibashi, A., Ozturk, S., Shaikh, F., Sengupta, D., & El-Halwagi, M. M. (2017). A review of biodiesel production from microalgae. Clean Technologies and Environmental Policy, 19(3), 637–668. https://doi.org/10.1007/s10098-016-1309-6
dos Santos, R. R., Kunigami, C. N., Gomes Aranda, D. A., & Luz Lapa Teixeira, C. M. (2016). Assessment of triacylglycerol content in Chlorella vulgaris cultivated in a two-stage process. Biomass and Bioenergy, 92, 55–60. https://doi.org/10.1016/j.biombioe.2016.05.014
Hamrick, K., & Gallant, M. (2017). Unlocking potential: State of the Voluntary Carbon MArkets 2017. Forest Trends’s Ecosystem Marketplace, 42.
Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223(November 2017), 1078–1085. https://doi.org/10.1016/j.jenvman.2018.07.024
Jenkins, S. H. (1982). Standard Methods for the Examination of Water and Wastewater. Water Research, 16(10), 1495–1496. https://doi.org/10.1016/0043-1354(82)90249-4
Jose, T. K., & Anand, K. (2016). Effects of biodiesel composition on its long term storage stability. Fuel, 177, 190–196. https://doi.org/10.1016/j.fuel.2016.03.007
Kang, X., Lin, R., O’Shea, R., Deng, C., Li, L., Sun, Y., & Murphy, J. D. (2020). A perspective on decarbonizing whiskey using renewable gaseous biofuel in a circular bioeconomy process. Journal of Cleaner Production, 255, 120211. https://doi.org/10.1016/j.jclepro.2020.120211
Khanzada, Z. T. (2020). Phosphorus removal from landfill leachate by microalgae. Biotechnology Reports, 25, e00419. https://doi.org/10.1016/j.btre.2020.e00419
Kialashaki, M., Mahdavi, M. A., & Gheshlaghi, R. (2019). Improved transesterification conditions for production of clean fuel from municipal wastewater microalgae feedstock. Journal of Cleaner Production, 241, 118388. https://doi.org/10.1016/j.jclepro.2019.118388
Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36–59. https://doi.org/10.1016/j.pecs.2016.08.001
Kumar, P. K., Krishna, S. V., Naidu, S. S., Verma, K., Bhagawan, D., & Himabindu, V. (2019). Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study. Carbon Resources Conversion, 2(2), 126–133. https://doi.org/10.1016/j.crcon.2019.06.002
Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, 197–207. https://doi.org/10.1016/j.renene.2016.11.032
Marques, I. M., Moreira, Í. T. A., Melo, N. R., Oliveira, A. C. V., Wicks, W. S. F., & Souza, L. C. (2017). Protótipo Para Tratamento De Águas Residuais Urbanas Utilizando a Espécie De Microalga Chlorella Vulgaris Com Vistas À Geração De Bioprodutos. RDE - Revista de Desenvolvimento Econômico, 1(39), 183. https://doi.org/10.21452/rde.v3nesp.5407
Marques, I. M., Oliveira, A. C. V., Souza, L. C., Melo, N. R., Wicks, W. S. F., & Moreira, Í. T. A. (2016). Avaliação Do Nível De Degradação Das Águas Superficiais Do Rio Lucaia, Salvador – Ba. 341–348. https://doi.org/10.5151/engpro-eneeamb2016-rh-010-5119
Mohd-Sahib, A. A., Lim, J. W., Lam, M. K., Uemura, Y., Isa, M. H., Ho, C. D., Kutty, S. R. M., Wong, C. Y., & Rosli, S. S. (2017). Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material. Bioresource Technology, 239, 127–136. https://doi.org/10.1016/j.biortech.2017.04.118
Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. F. S., Santos, A. M. P., Martins, C. M. S., Silva, C. S. & Jesus, R. S. (2011). Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical Journal, 99, 376-382.
Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. E. S., Ferreira, S. L. C., Martins, C. M. S., Silva, A. C. M. & Falcão, B. A. (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Marine Pollution Bulletin, 67, 130-136.
Moreira, I. T. A., Oliveira, O. M. C., Silva, C. S., Rios, M. C., Queiroz, A. F. S., Assunção, R. V. & Carvalho, A. P. N. (2014). Chemometrics applied in laboratory study on formation of oil-spm aggregates (OSA) – a contribution to ecological evaluation. Microchemical Journal, 118, 198-202.
Moreira, I. T. A., Oliveira, O. M. C., Azwell, T., Queiroz, A. F. S., Nano, R. M. W., Souza, E. S., dos Anjos, J. A. S. A., Assunção, R. V. & Guimarães, L. M. (2016). Strategies of Bioremediation for the Degradation of Petroleum Hydrocarbons in the Presence of Metals in Mangrove Simulated. Chean Soil Air Water, 44 (6), 631-637.
Mubarak, M., Shaija, A., & Suchithra, T. V. (2015). A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117–123. https://doi.org/10.1016/j.algal.2014.10.008
Mujtaba, G., & Lee, K. (2017). Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research, 120, 174–184. https://doi.org/10.1016/j.watres.2017.04.078
Nascimento, R. S. L., Silva, L. M. L., Periard, L., Santiago, A. F. (2020). Tratamento de águas residuárias em fotobiorreatores de fluxo contínuo iluminados por luz artificial e solar. Research, Society and Development. 9(6), 1 - 15. http://dx.doi.org/10.33448/rsd-v9i6.3748
Nayak, M., Karemore, A., & Sen, R. (2016). Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Research, 16, 216–223. https://doi.org/10.1016/j.algal.2016.03.020
Oliveira, A. C. V., Silva, A. de S., & Moreira, Í. T. A. (2019). Economia Circular: Conceitos E Contribuições Na Gestão De Resíduos Urbanos. RDE - Revista de Desenvolvimento Econômico, 3(44), 273–289. https://doi.org/10.36810/rde.v3i44.6386
Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16(6), 12871–12890. https://doi.org/10.3390/ijms160612871
Posadas, E., Morales, M. del M., Gomez, C., Acién, F. G., & Muñoz, R. (2015). Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265, 239–248. https://doi.org/10.1016/j.cej.2014.12.059
Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24, 159–171. https://doi.org/10.1016/j.rser.2013.03.034
Prommuak, C., Pavasant, P., Quitain, A. T., Goto, M., & Shotipruk, A. (2012). Microalgal lipid extraction and evaluation of single-step biodiesel production. Engineering Journal, 16(5), 157–166. https://doi.org/10.4186/ej.2012.16.5.157
Qin, L., Wang, Z., Sun, Y., Shu, Q., Feng, P., Zhu, L., Xu, J., & Yuan, Z. (2016). Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environmental Science and Pollution Research, 23(9), 8379–8387. https://doi.org/10.1007/s11356-015-6004-3
Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125
Ramluckan, K., Moodley, K. G., & Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 116, 103–108. https://doi.org/10.1016/j.fuel.2013.07.118
Redfield, A. C. (1958). Redfield_AmSci_1958.pdf. In American Scientist.
Salama, E. S., Jeon, B. H., Chang, S. W., Lee, S. hun, Roh, H. S., Yang, I. S., Kurade, M. B., El-Dalatony, M. M., Kim, D. H., Kim, K. H., & Kim, S. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, 168, 1017–1024. https://doi.org/10.1016/j.jclepro.2017.09.057
Samorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Research, 47(2), 791–801. https://doi.org/10.1016/j.watres.2012.11.006
Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Frontiers in Plant Science, 6(OCTOBER). https://doi.org/10.3389/fpls.2015.00899
Serrano, M., Martínez, M., & Aracil, J. (2013). Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step. Fuel Processing Technology, 116, 135–141. https://doi.org/10.1016/j.fuproc.2013.05.011
Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I., & Bux, F. (2016). Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 55, 1–16. https://doi.org/10.1016/j.rser.2015.11.001
Souza Andrade, A. C. F. E. (n.d.). Microalgas de Águas Continentais (Vol. 2).
Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Reports, 2, 8–13. https://doi.org/10.1016/j.egyr.2015.12.001
Wang, Q., Jin, W., Zhou, X., Guo, S., Gao, S. H., Chen, C., Tu, R., Han, S. F., Jiang, J., & Feng, X. (2019). Growth enhancement of biodiesel-promising microalga Chlorella pyrenoidosa in municipal wastewater by polyphosphate-accumulating organisms. Journal of Cleaner Production, 240, 118148. https://doi.org/10.1016/j.jclepro.2019.118148
Wu, K. chau, Ho, K. chung, Tang, C. cheung, & Yau, Y. hung. (2018). The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and biodiesel production. Environmental Science and Pollution Research, 1–11. https://doi.org/10.1007/s11356-018-1242-9
Xaaldi Kalhor, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1–2), 286–290. https://doi.org/10.1016/j.marpolbul.2017.08.045
Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016
Zainuddin, Z. B., Zailani, S., Govindan, K., Iranmanesh, M., & Amran, A. (2017). Determinants and outcome of a Clean Development Mechanism in Malaysia. Journal of Cleaner Production, 142(January 2018), 1979–1986. https://doi.org/10.1016/j.jclepro.2016.11.086
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.