Avaliação de nanofluidos de nanoargila montmorilonita hidrofílica e goma xantana em meio salino
DOI:
https://doi.org/10.33448/rsd-v9i8.5305Palavras-chave:
Nanoargila; Xantana; Nanofluido de perfuração; Reologia.Resumo
Com a estimativa de aumento da demanda de petróleo para as próximas décadas, intensifica-se a necessidade de exploração de áreas não convencionais, e associada a elas, ante aos altos custos de exploração, a necessidade de aperfeiçoar as tecnologias disponíveis. Nesse sentido, na última década, intensificou-se a aplicação de nanopartículas para o aperfeiçoamento de fluidos de perfuração. Nesse cenário, as nanoargilas montmorilonitas e as gomas xantana foram pouco exploradas para o desenvolvimento de nanofluidos. Neste trabalho, verificou-se a influência da nanoargila montmorilonita hidrofílica sobre os parâmetros reológicos de soluções de xantana, cloretos de sódio e de cálcio. Para tal, primeiro, a argila foi caracterizada por DRX, FRX e TGA. Depois, mantendo constantes as concentrações dos sais e da xantana, avaliou-se a influência da variação de concentração de nanoargila sobre a reologia da solução. Em seguida, mantendo as concentrações dos componentes constantes, verificou-se a influência da temperatura e em seguida do tempo de hidratação sobre a reologia da mistura. Por fim, para avaliar a interação das partículas da mistura, verificou-se a Condutividade Elétrica e o Potencial Zeta, variando-se concentração de nanoargila e tempo de hidratação. Concluiu-se que: para certas concentrações de nanoargila, há melhoria da reologia das soluções de xantana; a adição de nanoargila favorece a reologia na mistura de xantana com o aumento da temperatura; o tempo de hidratação não afeta significativamente a reologia do nanofluido; há interação entre a nanoargila e a xantana.
Referências
Abdou, M. I. & Ahmed, H.E.-S. (2011). Effect of particle size of bentonite on rheological behavior of the drilling mud. Petrol. Sci. Technol., 29(21), 2220–2233. doi: 10.1080/10916461003663065
Abu-Jdayil, B. (2011). Rheology of sodium and calcium bentonite–water dispersions: Effect of electrolytes and aging time. Int. J. Miner. Process., 98(3-4),208–213. doi: 10.1016/j.minpro.2011.01.001
Aftab, A, Ismail, A.R., Ibupoto, Z.H., Akeiber, H.& Malghani, M.G.K. (2017). Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review.Renew. Sust. Energ. Rev., 76, 1301–1313. doi: 10.1016/j.rser.2017.03.050
Alizadeh, S., Sabbaghi, S.& Soleymani, M. (2015). Synthesis of Alumina/Polyacrylamide nanocomposite and its influence on viscosity of drilling fluid. Int. J. Nano Dimens., 6(3), 271-276. doi: 10.7508/IJND.2015.03.006
Al-Yasiri, M., Awad, A., Pervaiz, S.& Wen, D. (2019). Influence of silica nanoparticles on the functionality of water-based drilling fluids. J. Petrol. Sci. Eng., 179, 504–512. doi: 10.1016/j.petrol.2019.04.081
Al-Yasiri, M. S. & Al-Sallami, W.T. (2015). How the Drilling Fluids Can be Made More Efficient by Using Nanomaterials. Am. J. Nano Res. Appl., 3, 41-45. doi: 10.11648/j.nano.20150303.12
Amanullah, M., Al-Arfaj, M. K. & Al-Abdullatif, Z.A. (2011, March 1-3). Preliminary test results of nano-based drilling fluids for oil and gas field application. Paper presented at theSPE/IADC Drilling Conference and Exhibition. Amsterdam: Society of Petroleum Engineers.
Amiri, M. C. & Sadeghialiabadi, H. (2014). Evaluating the Stability of Colloidal Gas Aphrons in the Presence of Montmorillonite Nanoparticles. Colloid. Surface. A, 457, 212-219. doi: 10.1016/j.colsurfa.2014.05.076
Amorim, L.V. (2003). Melhoria, Proteção e Recuperação da Reologia de Fluidos Hidroargilosos para Uso na Perfuração de Poços de Petróleo. (Doctoral Thesis). Universidade Federal de Campina Grande, Campina Grande, PB.
Barry, M.M., Jung, Y., Lee, J. -K., Phuoc, T.X.& Chyu, M.K. (2015).Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Petrol. Sci. Eng., 127, 338–346. doi: 10.1016/j.petrol.2015.01.012
Benyounes, K., Mellak, A. & Benchabane, A. (2010). The Effect of Carboxymethylcellulose and Xanthan on the Rheology of Bentonite Suspensions. Energy Source. Part A, 32(17), 1634–1643. doi: 10.1080/15567030902842244
Bera, A.& Belhaj, H. (2016). Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery - A comprehensive review. J. Nat. Gas Sci. Eng., 34, 1284-1309. doi: 10.1016/j.jngse.2016.08.023
Bordi, F. & Carnetti, C. (1986). Equivalent Conductivity of Carboxymethylcellulose Aqueous Solutions with Divalent Counterions. J. Phys. Chem., 90(13), 3034-3038. doi: 10.1021/j100404a049
Borges, C.D., Vendruscolo, C.T., Martins, A.L.; Lomba, R.F.T. (2009). Comportamento Reológico de Xantana Produzida por Xanthomonas arboricola pv pruni para Aplicação em Fluido de Perfuração de Poços de Petróleo. Polimeros, 19(2), 160-165. doi: 10.1590/S0104-14282009000200015
Caenn, R., Darley, H. C. H. & Gray, G. R. (2014). Fluidos de Perfuração e Completação (6 ed.). Rio de Janeiro, RJ: Elsevier B. V..
Cheraghian, G. (2017). Application of Nano-Particles of Clay to Improve Drilling Fluid. Int. J. Nanosci. Nanotechnol., 13(2), 177-186.
Cheraghian, G., Wu, Q., Mostofi, M., Li, M.-C., Afrand, M. & Sangwai, J.S. (2018). Effect of a Novel Clay/silica Nanocomposite on Water-Based Drilling Fluids: Improvements in Rheological and Filtration Properties. Colloid.Surface. A, 555, 339-350. doi: 10.1016/j.colsurfa.2018.06.072
Choppe, E., Puaud, F., Nicolai, T.& Benyahia, L. (2010). Rheology of xanthan solutions as a function of temperature, concentration and ionic strength.Carbohydr. Polym., 82(4), 1228–1235. doi: 10.1016/j.carbpol.2010.06.056
Chung, Y.-L.& Lai, H.-M. (2010). Preparation and properties of biodegradable starch-layered double hydroxide Nanocomposites. Carbohydr. Polym., 80(2), 525–532. doi: 10.1016/j.carbpol.2009.12.020
Comba, S., Dalmazzo, D., Santagata, E.& Sethi, R. (2011).Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J. Hazard. Mater., 185(2-3), 598–605. doi: 10.1016/j.jhazmat.2010.09.060
Contreras, O., Hareland, G., Husein, M., Nygaard, R.& Al-Saba, M. (2014, February 26-28). Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage. Paper presented at theSPE International Symposium and Exhibition on Formation Damage Control. Lafayette, LA: Society of Petroleum Engineers. doi: 10.2118/168116-MS
Dolez, P.I. (2015). Nanoengineering: Global Approaches to Health and Safety Issues (pp. 3-40). Amsterdam: Elsevier B. V..
Energy Information Administration. (2017, September 14). EIA projects 28% increase in world energy use by 2040. Retrieved March 27, 2020, from https://www.eia.gov/todayinenergy/detail.php?id=32912.
Energy Information Administration. (2006, June). International Energy Outlook 2006. Retrieved March 28, 2020, from http://www.economicswebinstitute.org/essays/energy2006.pdf
Fakoya, M.F.& Shah, S.N. (2013, March 26-27). Rheological Properties of Surfactant-Based and Polymeric Nano-Fluids. Paper presented at theSPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. The Woodlands, TX: Society of Petroleum Engineers. doi: 10.2118/163921-MS
Fitzgerald, B. L., McCourt, A. J. & Brangetto, M. (2000, February 23-25). Drilling Fluid Plays Key Role in Developing the Extreme HTHP, Elgin/Franklin Field. Paper presented at the IADC/SPE Drilling Conference. New Orleans, LA: Society of Petroleum Engineers. doi: 10.2118/59188-MS
Gaidzinski, R., Osterreicher-Cunha, P., Duailibi Fh., J. & Tavares, L. M. (2009) Modification of clay properties by aging: Role of indigenous microbiota and implications for ceramic processing. Appl. Clay Sci., 43(1), 98–102. doi: 10.1016/j.clay.2008.07.007
García-Ochoa, F., Santos, V.E., Casas, J.A.& Gómez, E. (2000). Xanthan gum: production, recovery, and properties.Biotechnol. Adv., 18(7), 549-579. doi: 10.1016/S0734-9750(00)00050-1
Gierszewska, M., Jakubowska, E.& Olewnik-Kruszkowska, E. (2019). Effect of chemical crosslinking on properties of chitosan-montmorillonite composites. Polym. Test., 77, 105872. doi: 10.1016/j.polymertesting.2019.04.019
Golubeva, O. Y., Ul’yanova, N. Y., Kostyreva, T. G., Drozdova, I. A. & Mokeev, M. V. (2013). Synthetic Nanoclays with the Structure of Montmorillonite: Preparation, Structure, and Physico-Chemical Properties. Glass Phys. Chem+, 39(5), 533–539. doi: 10.1134/S1087659613050088
Grim, R. E. & Güven, N. (1978).Bentonites: Geology, Mineralogy, Properties and Uses Developments in Sedimentology(24 ed.). Amsterdam: Elsevier Scientific Publishing Company.
Hassani, A. H & Ghazanfari, M.H. (2017). Improvement of non-aqueous colloidal gas aphron-based drilling fluids properties: Role of hydrophobic nanoparticles. J. Nat. Gas Sci. Eng., 42, 1-12. doi: 10.1016/j.jngse.2017.03.005
Herschel, W.H.& Bulkley, R. (1926). Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Z., 39, 291–300.
Hoelscher, K. P., Stefano, G.D., Riley, M. & Young, S. (2012, June 12-14). Application of nanotechnology in drilling fluids. Paper presented at theSPE International Oilfield Nanotechnology Conference and Exhibition. Noordwijk: Society of Petroleum Engineers. doi: 10.2118/157031-MS
Hoidy, W.H., Ahmad, M. B., Al Mulla, E.A.J.& Ibrahim, N.A.B. (2009). Synthesis and Characterization of Organoclay from Sodium Montmorillonite and Fatty Hydroxamic.Acids. Am. J. Appl. Sci., 6(8), 1567-1572. doi: 10.3844/ajassp.2009.1567.1572
Holme, K. R., Hall, L. D, Speers, R.A.& Tung, M.A. (1988). High shear rate flow behavior of xanthan gum dispersions. Food Hydrocoll., 2(2), 159-167. doi: 10.1016/S0268-005X(88)80014-6
Howard, S., Kaminski, L.& Downs, J. (2015, June 3-5). Xanthan stability in formate brines - Formulating non-damaging fluids for high temperature applications. Paper presented at theSPE European Formation Damage Conference and Exhibition.Budapest: Society of Petroleum Engineers. doi: 10.2118/174228-MS
Ismail, A. R., Aftab, A., Ibupoto, Z. H. & Zolkifile, N. (2016). The novel approach for the enhancement of rheological properties of water-based drilling fluids by using multi-walled carbono nanotube, nanosilica and glass beads. J. Petrol. Sci. Eng., 139, 264–275. doi: 10.1016/j.petrol.2016.01.036
Jain, R. & Mahto, V. (2015). Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J. Petrol. Sci. Eng., 133, 612–621. doi: 10.1016/j.petrol.2015.07.009
Jang, H.Y., Zhang, K., Chon, B.H.& Choi, H.J. (2015). Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J. Ind. Eng. Chem., 21, 741–745. doi: 10.1016/j.jiec.2014.04.005
Kelco, C. Q. (2000). Xanthan gum book (8 ed.). Atlanta, GA: C. Q. Kelco.
Kelessidis, V.C.& Maglione, R. (2008). Yield stress of water–bentonite dispersions. Colloid.Surface. A, 318(1-3), 217–226. doi: 10.1016/j.colsurfa.2007.12.050
Kelessidis, V. C., Maglione, R., Tsamantaki, C.& Aspirtakis, Y. (2006). Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. J. Petrol. Sci. Eng., 53(3-4), 203–224. doi: 10.1016/j.petrol.2006.06.004
Kelessidis, V.C., Papanicolaou, C.& Foscolos, A. (2009).Application of Greek lignite as an additive for controlling rheological and filtration properties of water–bentonite suspensions at high temperatures: A review. Int. J. Coal Geol., 77(3-4), 394–400. doi: 10.1016/j.coal.2008.07.010
Kelessidis, V.C., Tsamantaki, C.& Dalamarinis, P. (2007). Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl. Clay Sci., 38(1-2), 86–96. doi: 10.1016/j.clay.2007.01.011
Kennedy, J.R.M., Kent, K.E.& Brown, J.R. (2015). Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mat. Sci. Eng. C, 48, 347–353. doi: 10.1016/j.msec.2014.12.040
Khalil, M. & Jan, B.M. (2012). Herschel-Bulkley Rheological Parameters of a Novel Environmentally Friendly Lightweight Biopolymer Drilling Fluid from Xanthan Gum and Starch. J. Appl. Polym. Sci., 124(1), 595–606. doi: 10.1002/app.35004
Khodja, M., Canselier, J. P., Bergaya, F., Fourar, K., Khodja, M., Cohaut, N. & Bemounah, A. (2010). Shale problems and water-based drilling fluid optimisation in the Hassi Messaoud Algerian oil field. Appl. Clay Sci., 49(4), 383-393. doi: 10.1016/j.clay.2010.06.008
Khunawattanakul, W., Puttipipatkhachorn, S., Rades, T.& Pongjanyakul, T. (2010). Chitosan–magnesium aluminum silicate nanocomposite films: Physicochemical characterization and drug permeability. Int. J. Pharm., 393(1-2), 219–229. doi: 10.1016/j.ijpharm.2010.04.007
Laird, D.A. (2006). Influence of layer charge on swelling of smectites. Appl. Clay Sci., 34(1-4), 74–87. doi: 10.1016/j.clay.2006.01.009
Li, M., Wu, Q., Song, K., Hoop, C.F. D., Lee, S., Qing, Y.& Wu, Y. (2016). Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Ind. Eng. Chem. Res., 55(1), 133–143. doi: 10.1021/acs.iecr.5b03510
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y. & Tadé; M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem. Eng. Res. Des., 89(11), 2356–2364. doi: 10.1016/j.cherd.2011.02.023
Lucena, D. V., Lira, H. L. & Amorim, L. V. (2014). Efeito de aditivos poliméricos nas propriedades reológicas e de filtração de fluidos de perfuração. Tecnol. Metal Mater. Miner., 11(1), 66-73. doi: 10.4322/tmm.2014.010
Luporini, S. & Bretas, R. E. S. (2011). Caracterização Reológica da Goma Xantana: Influência de Íons Metálicos Univalente e Trivalente e Temperatura em Experimentos Dinâmicos. Polimeros, 21(3), 188-194. doi: 10.1590/S0104-14282011005000043
Maghzi, A., Kharrat, R., Mohebbi, A. & Ghazanfari, M.H. (2014).Theimpact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel, 123, 123–132. doi: 10.1016/j.fuel.2014.01.017
Mariani, F. Q., Villalba, J. C. & Anaissi, F.J. (2013). Caracterização Estrutural de Argilas Utilizando DRX com Luz Síncrotron, MEV, FTIR e TG-DTG-DTA. Orbital: Electronic J. Chem.,5(4), 249-256.
Melo, C., Garcia, P.S., Grossmann, M.V.E., Yamashita, F., Dall’Antônia, L. H. &Mali, S. (2011).Properties of Extruded Xanthan-Starch-Clay Nanocomposite Films. Braz. Arch.Biol. Technol., 54(6), 1223-1333. doi: 10.1590/S1516-89132011000600019
Melo, K. C. (2008). Avalição e modelagem reológica de fluidos de perfuração base água (Master’s Thesis). Universidade Federal do Rio Grande do Norte, Natal, RN.
Mélo, T. J. A., Araújo, E. M., Brito, G. F. & Agrawal, P. (2014). Development of nanocomposites from polymer blends: effect of organoclay on the morphology and mechanical properties. J. Alloy Compd., 615, S391-S391. doi: 10.1016/j.jallcom.2013.11.151
Menezes, R. R., Melo, L.R.L., Fonseca, F.A. S., Ferreira, H. S., Martins, A. B. & Neves, G.A. (2008). Caracterização de argilas bentoníticas do Município de Sussego, Paraíba, Brasil. Revista Eletrônica de Materiais e Processos, 3(2), 36-43.
Monteiro, S. N. & Vieira, C. M. F. (2004). Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Appl. Clay Sci., 27(3-4), 229–234. doi: 10.1016/j.clay.2004.03.002
Morariu, S., Bercea, M. & Brunchi, C.-E. (2018). Phase separation in xanthan solutions. Cellul. Chem. Technol., 52(7-8), 569-576.
Morita, R. Y., Barbosa, R. V. & Kloss, J. R. (2015). Caracterização de Bentonitas Sódicas: Efeito do Tratamento com Surfactante Orgânico Livre de Sal de Amônio. Rev. Virtual Quim.,7(4),1286-1298. doi: 10.5935/1984-6835.20150071
Nejad, M.H., Ganster, J., Bohn, A., Volkert, B.& Lehmann, A. (2011). Nanocomposites of starch mixed esters and MMT: Improved strength, stiffness, and toughness for starch propionate acetate laurate. Carbohydr. Polym., 84(1), 90–95. doi: 10.1016/j.carbpol.2010.10.067
Noori, S., Kokabi, M. & Hassan, Z.M. (2015). Nanoclay Enhanced the Mechanical Properties of Poly(Vinyl Alcohol)/Chitosan/Montmorillonite Nanocomposite Hydrogel as Wound Dressing. Procedia Mater.Sci., 11, 152–156. doi: 10.1016/j.mspro.2015.11.023
Oueslati, W., Ammar, M.& Chorfi, N. (2015). Quantitative XRD Analysis of the Structural Changes of Ba-Exchanged Montmorillonite: Effect of an in Situ Hydrous Perturbation. Minerals, 5, 507-526. doi: 10.3390/min5030507
Parizad, A., Shahbazi, K. & Tanha, A. A. (2018). Enhancement of polymeric water-based drilling fluid properties using nanoparticles. J. Petrol. Sci. Eng., 170, 813–828. doi: 10.1016/j.petrol.2018.06.081
Perween, S., Thakur, N. K., Beg, M., Sharma, S. & Ranjan, A. (2019). Enhancing the properties of Water based Drilling Fluid using Bismuth Ferrite Nanoparticles. Colloid. Surface. A, 561, 165-177. doi: 10.1016/j.colsurfa.2018.10.060
Ponmani, S., William, J. K. M., Samuel, R., Nagarajan, R. & Sangwai, J. S. (2014). Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloid. Surface. A, 443, 37–43. doi: 10.1016/j.colsurfa.2013.10.048
Pooja, D., Panyaram, S., Kulhari, H., Rachamalla, S.S.& Sistla, R. (2014). Xanthan gum stabilized gold nanoparticles: Characterization, Biocompatibility, Stability and Cytotoxicity. Carbohydr. Polym., 110, 1-9. doi: 10.1016/j.carbpol.2014.03.041
Prodanov, C. C. & Freitas, E. C. (2013). Metodologia do Trabalho Científico: Métodos e Técnicas de Pesquisa e do Trabalho Acadêmico (2nd ed., pp. 129-141). Feevale. http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book%20Metodologia%20do%20Trabalho%20Cientifico.pdf
Rao, M. A., Rizvi, S. S. H. & Datta, A. K. (2005). Engineering Properties of Foods (3 ed, pp. 461-500). Boca Raton, FL: Taylor and Francis Group.
Reinoso, D., Martín-Alfonso, M.J., Luckham, P.F.& Martínez-Boza, F.J. (2019). Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydr. Polym., 203, 103–109. doi: 10.1016/j.carbpol.2018.09.034
Riley, M., Young, S., Stamatakis, E., Guo, Q., Ji, L., Stefano, G. D.,… & Friedheim, J. (2012, March 28-30). Wellbore stability in unconventional shales-the design of a nanoparticle fluid. Paper presented at theSPE Oil and Gas India Conference and Exhibition. Mumbai, MH: Society of Petroleum Engineers. doi: 10.2118/153729-MS
Rochefort, W. E. & Middleman, S. (1987). Rheology of Xanthan Gum: Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments. J. Rheol., 31, 337-369. doi: 10.1122/1.549953
Rojtanatanya, S. & Pongjanyakul, T. (2010). Propranolol-magnesium aluminum silicate complex dispersions and particles: characterization and factors influencing drug release. Int. J; Pharm., 383(1-2), 106-115. doi: 10.1016/j.ijpharm.2009.09.016
Rongthong, T., Sungthongjeen, S., Siepmann, J.& Pongjanyakul, T. (2013). Quaternary polymethacrylate-magnesium aluminum silicate films: molecular interactions, mechanical properties and tackiness. Int. J; Pharm., 458(1), 57-64. doi: 10.1016/j.ijpharm.2013.10.016
Sadeghalvaad, M & Sabbaghi, S. (2015). The Effect of the TiO2/Polyacrylamide Nanocomposite on Water-Based Drilling Fluid Properties. Powder Technol., 272, 113–119. doi: 10.1016/j.powtec.2014.11.032
Sagou, J.-P. S.; Ahualli, S. & Thomas, F. (2015). Influence of ionic strength and polyelectrolyte concentration on the electrical conductivity of suspensions of soft colloidal polysaccharides. J. Colloid Interf. Sci., 459, 212–217. doi: 10.1016/j.jcis.2015.08.001
Salopek, B., Krasić, D. & Filipović, S. (1992). Measurement and application of zeta-potential.Rud.-geol.-naft.zb., 4,147-151.
Santos, P. S. (2000). Tecnologia das Argilas: Fundamentos (Vol. 1). São Paulo, SP: Edgard Blücher.
Santos, R. F. A., Reis, M. M., Ueki, M. M., Santos, Z. I. G. & Brito, G. F. (2016, November 6-10). Influência da argila montmorilonita nas propriedades mecânicas e morfológicas de nanocompósitos obtidos a partir de blendas de polietileno/poli (tereftalato de etileno). Paper presented at the 22º Congresso Brasileiro de Engenharia e Ciência dos Materiais. Natal, RN: Associação Brasileira de Cerâmica.
Sato, T., Watanabe, T.& Otsuka, R. (1992).Effects of layer charge, charge location, and energy change on expansion proprerties of dioctahedral smectites. Clay. Clay Miner., 40(1), 103-113. doi: 10.1346/CCMN.1992.0400111
Shakib, J. T., Kanani, V. & Pourafshary, P. (2016). Nano-clays as additives for controlling filtration properties of water - bentonite suspensions. J. Petrol. Sci. Eng., 138, 257-264. doi: 10.1016/j.petrol.2015.11.018
Shaw, D. J. (1992). Colloid and Surface Chemistry (4 ed., pp.174-243). Oxford: Elsevier Science Ltd.
Slavutsky, A. M., Bertuzzi, M. A. & Armada, M. (2012). Water barrier properties of starch-clay nanocomposite films. Braz. J. Food. Technol., 15(3), 208-218. doi: 10.1590/S1981-67232012005000014
Soliman, A. A., El-hoshoudy, A.N.& Attia, A.M. (2020). Assessment of xanthan gum and xanthan-g-silica derivatives as chemical flooding agents and rock wettability modifiers. Oil Gas Sci. Technol., 75(12). doi: 10.2516/ogst/2020004
Speers, R. A. & Tung, M. A. (1986). Concentration and Temperature Dependence of Flow Behavior of Xanthan Gum Dispersions. J. Food Sci., 51(1), 96-98. doi: 10.1111/j.1365-2621.1986.tb10844.x
Srivatsa, J. T. & Ziaja, M.B. (2011, November 15-17). An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant-polymer based drilling fluids. Paper presented at theInternational Petroleum Technology Conference. Bangkok: Society of Petroleum Engineers. doi: 10.2523/IPTC-14952-MS
Taheri, A. & Jafari, S.M. (2019). Biopolymer Nanostructures for Food Encapsulation Purposes (Vol.1, 1 ed., pp.521-578). Amsterdam: Elsevier B.V.
Tang, X., Alavi, S. &Herald, T.J. (2008). Effects of plasticizers on the structure and properties of starch–clay. Carbohydr. Polym., 74(3), 552–558. doi: 10.1016/j.carbpol.2008.04.022
Thonart, Ph., Paquot, M., Hermans, L. & Alaoui, H. (1985). Xanthan production by Xanthomonas campestris NRRL B-1459 and interfacial approach by zeta potential measurement. Enzyme Microb. Technol., 7(5), 235-238. doi: 10.1016/S0141-0229(85)80009-0
Uddin, F. (2008). Clays, Nanoclays, and Montmorillonite Minerals. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 39(A), 2804-2814.
Villaça, J. C., Silva, L.C.R. P., Barbosa, L.H. F., Rodrigues, C. R., Lira, L. M., Carmo, F. A.,... & Cabral, L.M. (2014). Preparation and characterization of polymer/layered silicate pharmaceutical nanobiomaterials using high clay load exfoliation processes. J. Ind. Eng. Chem., 20(6), 4094-4101.
Vipulanandan, C. & Mohammed, A. (2015). Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. J. Petrol. Sci. Eng., 130, 86-95. doi: 10.1016/j.petrol.2015.03.020
Vryzas, Z. & Kelessidis, V.C. (2017). Nano-Based Drilling Fluids: A Review. Energies, 10(4), 540, 1-34. doi: 10.3390/en10040540
Vryzas, Z., Wubulikasimu, Y., Gerogiorgis, D. I. & Kelessidis, V. C. (2016). Understanding the Temperature Effect on the Rheology of Water-Bentonite Suspensions. Annual Transactions - The Nordic Rheology Society, 24, 199-208.
Wang, Y., Xiong, Y., Wang, J.& Zhang, X. (2017). Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloid.Surface. A, 520, 903-913. doi: 10.1016/j.colsurfa.2017.02.050
William, J.K. M., Ponmani, S., Samuel, R., Nagarajan, R.& Sangwai, J.S. (2014). Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J. Petrol. Sci. Eng., 117, 15–27. doi: 10.1016/j.petrol.2014.03.005
Wyatt, N. B. & Liberatore, M. W. (2010). The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solution. Soft Matter, 6(14), 3346–3352. doi: 10.1039/C000423E
Wyatt, N. B. & Liberatore, M. W. (2009). Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum. J. Appl. Polym. Sci., 114, 4076–4084. doi: 10.1002/app.31093
Wyatt, N. B., Gunther, C. M. & Liberatore, M. W. (2011). Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer, 52(11), 2437-2444. doi: 10.1016/j.polymer.2011.03.053
Xie, W. & Lecourtier, J. (1992). Xanthan behavior in water-fluid drilling fluids. Polym. Degrad. Stabil., 38(2), 155-164.
Xie, W., Gao, Z., Pan, W. P., Hunter, D., Singh, A. & Vaia, R. (2001). Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem. Mater., 13(9), 2979-2990. doi: 10.1021/cm010305s
Yang, K. K., Wang, X. L. & Wang, Y. Z. (2007). Progress in Nanocomposite of Biodegradable Polymer. J. Ind. Eng. Chem., 13(4), 485-500.
You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q. & Goh, S. W. (2011). Nanoclay-modified asphalt materials: Preparation and characterization. Constr. Build. Mater., 25(2), 1072–1078. doi: 10.1016/j.conbuildmat.2010.06.070
Zhong, L., Oostrom, M., Truex, M. J., Vermeul, V. R. & Szecsody, J. E. (2013). Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater., 244–245, 160–170. doi: 10.1016/j.jhazmat.2012.11.028
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.