Impactos do amido resistente e da enzima transglutaminase nas características tecnológicas de espaguete

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.6219

Palavras-chave:

Massa alimentícia; Fonte de fibra; Intercruzamento.

Resumo

O uso de amido resistente em novos produtos vem aumentando devido aos benefícios à saúde associado ao consumo de fibras. Entretanto, sua utilização em produtos, como massas alimentícias, é limitada por enfraquecer a rede de glúten. Uma possibilidade para solucionar este problema é a adição da enzima transglutaminase. O objetivo deste estudo foi avaliar a influência da adição de amido resistente (AR) e de transglutaminase (TG) nas características de cozimento, textura, cor e na solubilidade de proteínas de espaguete, através de um delineamento composto central rotacional de duas variáveis independentes (x1 = AR, 0 a 20 %; x2 = TG, 0,2 a 1,0 %). As principais variáveis dependentes estudadas foram: amido resistente, cor instrumental, características de cozimento e de textura e solubilidade de proteínas. Através da Metodologia de Superfície de Resposta analisou-se os resultados que demonstraram que AR e TG apresentaram influência na qualidade dos produtos, sendo estatisticamente significativas (p<0,10) para cor, tempo ótimo de cozimento, aumento de peso, aumento de volume, elasticidade e teor de amido resistente. A luminosidade (L*) foi maior com o aumento de AR e TG. Maiores teores de AR diminuem o tempo de cozimento e a elasticidade. Dentre as variáveis independentes, AR apresentou maior efeito sobre as variáveis dependentes estudadas. O ponto otimizado (0,70 de desejabilidade) necessita do uso de 18,65 % de amido resistente, resultando em um espaguete com apelo de fonte de fibra alimentar, pois contêm mais de 2,5 g de fibra alimentar, por porção, no produto pronto para o consumo.

Biografia do Autor

Leandra Zafalon Jaekel, Instituto Federal Sul-Riograndense de Educação, Ciência e Tecnologia

Bacharel em Química de Alimentos pela Universidade Federal de Pelotas (2006) e em Licenciatura plena pela Universidade Católica de Pelotas (2007). Curso de pós-graduação em Ciência dos Alimentos (Latu Sensu) pela Universidade Federal de Pelotas (2010). Mestrado em Ciência e Tecnologia Agroindustrial pela Faculdade de Agronomia Eliseu Maciel na Universidade Federal de Pelotas com ênfase em Alimentos de Origem Vegetal, atuando principalmente nos seguintes temas: Grãos: soja e arroz; alimentos funcionais; ensaio biológico. Doutorado em Tecnologia de Alimentos pela Faculdade de Engenharia de Alimentos na Universidade Estadual de Campinas, atuando na área de Cereais, Raízes e Tubérculos. Atualmente é professora no Instituto Federal Sul-rio-grandense, Campus Bagé.

Marcio Schmiele, Universidade Federal dos Vales do Jequitinhonha e Mucuri

Bacharel em Química de Alimentos pela Universidade Federal de Pelotas (2007), Mestre em Tecnologia de Alimentos (2009) e Doutor em Tecnologia de Alimentos (2014) pela Universidade Estadual de Campinas. Atuou como professor no Centro Universitário Amparense (UNIFIA), ministrando aulas nos Cursos de Nutrição, Química Industrial, Enfermagem e Biomedicina entre 2015 e 2016. Atuou como Químico na Universidade Estadual de Campinas entre 2012 e 2016. Atualmente é Professor do Magistério Superior, Classe C - Denominação de Adjunto, Nível 1 da Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina. Atua também como docente permanente e orientador do programa de Pós-Graduação em Ciência e Tecnologia de Alimentos da Universidade Federal dos Vales do Jequitinhonha e Mucuri. Tem experiência nos seguintes temas: Cereais, raízes, tubérculos, leguminosas, extrusão, proteínas vegetais, análogo de carne, amidos nativos e modificados, macarrão instantâneo, panificação e produtos gluten-free.

Yoon Kil Chang, Universidade Estadual de Campinas

Possui graduação em Engenharia de Alimentos pela Universidade Estadual de Campinas (1977), mestrado em Tecnologia de Alimentos pela Universidade Estadual de Campinas (1982) e doutorado em Tecnologia de Alimentos pela Universidade Estadual de Campinas (1989). Atualmente é professor titular (MS-6) da Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas. Realizou-se dois pós-doutorado em Rutgers-The State University of New Jersey(1989-1991), Kansas State University e USDA (2003-2004). Revisor de periódicos nacionais e internacionais :Cereal Chemistry, International Journal of Food Sciences and Nutrition (0963-7486), International Journal of Food Science and Technology, Journal of Food Engineering, J. Carbohydrate Polymer, Ciência e Tecnologia de Alimentos-SBCTA e Rev. Ciência e Agrotecnologia, UFLA. Membro editorial de revista internacionais: Nutraceutical and Food, Korea (1999-2003) e International Journal of Food Sciences and Nutrition, Korea (2003-2009). Tem experiência na área de Ciência e Tecnologia de Alimentos, com ênfase em Cereais Raízes E Tubérculos, atuando principalmente nos seguintes linhas de pesquisas: extrusão, , alimento funcional, panificação, massas alimentícias, biscoitos, tecnologia de amidos e desenvolvimento de produtos.

Referências

AACCI (2010). American Association of Cereal Chemists International. Approved methods. 11th ed. St. Paul: AACCI.

Aalami, M. & Leelavathi, K. (2008). Effect of microbial transglutaminase on spaghetti quality. Journal of Food Science, 73(5), 306-312. DOI: 10.1111/j.1750-3841.2008.00741.x.

Alsaffar, A. A. (2011). Effect of food processing on the resistant starch content of cereals and cereal products – a review. International Journal of Food Science and Technology, 46, 455-462. DOI: 1365-2621.2010.02529.x.

Antunes, K. H., Fachi, J. L., Paula, R., Silva, E. F., Pral, L. P., Santos, A. A., Dias, G. B. M., Vargas, J. E., Puga, R., Mayer, F. Q., Maito, F., Zárate-Bladés, C. R., Ajami, N. J., Sant’Ana, M. R., Candreva, T., Rodrigues, H. G., Schmiele, M., Clerici, M. T. P. S., Proença-Modena, J. L., Vieira, A. T., Mackay, C. R., Mansur, D., Caballero, M. T., Marzec, J., Li, J., Wang, X., Bell, D., Polack, F. P., Kleeberger, S. R., Stein, R. T., Vinolo, M. A. R. & Souza, A. P. D. (2019). Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 10, 3273. DOI: 10.1038/s41467-019-11152-6.

AOAC (2019). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 21st edn. Association of Official Analysis Chemists International, Gaithersburg.

BRASIL (2005a). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 8 de 02 de junho de 2005. Aprova o Regulamento Técnico de Identidade e Qualidade de Farinha de Trigo. Disponível em: . Acesso em: 13 jun. 2020.

BRASIL (2005b). Ministério de Saúde. Resolução RDC nº 263, de 22 de setembro de 2005. Aprova o Regulamento Técnico para produtos de cereais, amidos, farinhas e farelos. Disponível em: <http://www.anvisa.gov.br>. Acesso em: 13 jun. 2020.

BeMiller, J. N. (2020). Resistant starch. In J. Welti-Chanes et al. (eds.), Science and Technology of Fibers in Food Systems (pp153-186). Cham: Springer.

Bustos, M. C., Perez, G. T. & León, A. E. (2011). Sensory and nutritional attributes of fibre-enriched pasta. LWT - Food Science and Technology, 44, 1429-1434. DOI: 10.1016/j.lwt.2011.02.002.

Chillo, S., Laverse, J., Falcone, P. M., Protopapa, A. & Del Nobile, M. A. (2008). Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. Journal of Cereal Science, 47, 144-152. DOI: 10.1016/j.jcs.2007.03.004.

Derringer, G. & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12, 214-219.

Foschia, M., Beraldo, P. & Peressini, D. (2016). Evaluation of the physicochemical properties of gluten-free pasta enriched with resistant starch. Journal of the Science of Food and Agriculture 97(2). DOI: 10.1002/jsfa.7766.

Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E. & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43, 931-942. DOI: 10.1016/j.foodres.2010.02.004.

Goñi, I., Garcia-Diz, L., Mañas, E. & Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. Food Chemestry, 56(4), 445-449. DOI: 10.1016/0308-8146(95)00222-7

Hernández-Nava, R. G., Berrios, J., De Pan, J., Osorio-Díaz, P. & Bello-Perez, L. A. (2009). Development and characterization of spaghetti with high resistant starch content supplemented with banana starch. Food Science and Technology International, 15, 73-78. DOI: 10.1177/1082013208102379.

Nugent, A. P. (2005). Health properties of resistant starch. British Nutrition Foundation, 30, 27–54. DOI: 10.1111/j.1467-3010.2005.00481.x.

Ovando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I. & Bello-pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113, 121-126. DOI: 10.1016/j.foodchem.2008.07.035.

Pinheiro, V. J. F., Barbosa, I. C. da C., Cardoso, D. F. S. R., Rosa, R. M. S. S., Santos, L. P. & Neto, A. M. (2020). Quality evaluation of three brands of type 1 wheat flour commercialized in Belém, Pará, Brazil. Research, Society and Development, 9: e15985280. DOI: 10.33448/rsd-v9i8.5280.

Quinaud, B. E. R., Monteiro, P. L., Pires, C. R. F., Santos, V. F., Kato, H. C. A & Sousa, D. N. (2020). Elaboration and nutritional characterization of enriched food pasta with soybean waste. Research, Society and Development, 9(7) 1-13. DOI: 10.33448/rsd-v9i7.4724.

Remya, R., Jyothi, A. N., & Sreekumar, J. (2018). Effect of chemical modification with citric acid on the physicochemical properties and resistant starch formation in different starches. Carbohydrate Polymers, 202, 29-38. DOI: 10.1016/j.carbpol.2018.08.128

Santos, V. da S., Rodrigues, R. da S., Jaekel, L. Z., Chan, Y. K & Schmiele, M. (2017). Dough rheology and technological characteristics of pan bread elaborated with the partial replacement of wheat flour via isolated soy protein and transglutaminase. In H. Lewis (Ed), Bread consumption, cultural significance and health effects. (pp. 219-246). New York: Nova Science Publishers.

Schmiele, M., Jaekel, L. Z., Ishida, P. M. G., Chang, Y. K. & Steel, C. S. (2013). Massa alimentícia sem glúten com elevado teor proteico obtida por processo convencional. Ciência Rural, 43(5), 908-914. DOI: 10.1590/S0103-84782013000500026.

Souza, E. C., Neves, N. A. & Schmiele, M. (2019). Análise e caraterização de um padrão de identidade e qualidade do macarrão comercial [Resumo expandido]. In: Anais da IV Jornada Regional Sudeste de Engenharia de Alimentos. Anais... Diamantina (MG) UFVJM, 2019. Disponível em: . Acesso em: 21 jun. 2020.

Sozer, N., Dalgiç, A. C. & Kaya, A. (2007). Thermal, textural and cooking properties of spaghetti enriched with resistant starch. Journal of Food Engineering, 81, 476-484. DOI: 10.1016/j.jfoodeng.2006.11.026.

Sozer, N., Kaya, A. & Dalgic, A. C. (2008). The effect of resistant starch addition on viscoelastic properties of cooked spaghetti. Journal of Texture Studies, 39, 1-16. DOI: 10.1111/j.1745-4603.2007.00126.x.

Takács, K., Gelencsér, E. & Kovács, E. T. (2008). Effect of transglutaminase on the quality of wheat-based pasta products. European Food Research Technology, 226, 603-611. DOI: 10.1007/s00217-007-0604-1.

USDA – National Nutrient Database for Standard Reference. Disponível em: <http://www.nal.usda.gov/fnic/foodcomp/Data/>. Acesso em: 13 jun. 2020.

Vernaza, M. G., Biasutti, E., Schmiele, M., Jaekel, L. Z.; Bannwart, A., & Chang, Y. K. (2012). Effect of supplementation of wheat flour with resistant starch and monoglycerides in pasta dried at high temperatures. International Journal of Food Science & Technology, 47(6), 1302–1312. DOI: 10.1111/j.1365-2621.2012.02974.x

Vernaza, M. G. L. (2011). Macarrão instantâneo funcional obtido pelos processos de fritura convencional e a vácuo. Tese, Programa de Pós-Graduação em Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade de Campinas, Campinas, Brasil.

Vernaza, M. G., & Chang, Y. K. (2020). Resistant starch and soy protein isolate in instant noodles obtained by conventional and vacuum frying. Brazilian Journal of Food Technology, 23, DOI: 10.1590/1981-6723.23918.

Wu, J. & Corke, H. (2005). Quality of dried white salted noodles affected by microbial transglutaminase. Journal of the Science of Food and Agriculture, 85, 2587-2594. DOI: 10.1002/jsfa.2311.

Downloads

Publicado

01/08/2020

Como Citar

JAEKEL, L. Z.; SCHMIELE, M.; CHANG, Y. K. Impactos do amido resistente e da enzima transglutaminase nas características tecnológicas de espaguete. Research, Society and Development, [S. l.], v. 9, n. 8, p. e891986219, 2020. DOI: 10.33448/rsd-v9i8.6219. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6219. Acesso em: 9 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas