Híbridos de sorgo biomassa diferem em crescimento e uso de nitrogênio em baixa saturação de bases em solo arenoso
DOI:
https://doi.org/10.33448/rsd-v9i9.6289Palavras-chave:
Bioenergia; Nutriente; Toxicidade de alumínio; Sorghum bicolor.Resumo
Plantas de sorgo são bem cultivadas na região central do Brasil, que é originalmente pobre em fertilidade e rica em alumínio. Estas características demandam estudos para se conhecer melhores híbridos para tal ambiente, principalmente no que se referre ao uso de nutrientes como o nitrogênio (N). Este nutriente é o mais limitante para o crescimento, desenvolvimento e produção vegetal; por isso é de grande importância compreender os efeitos da baixa saturação de bases sobre o uso de N em sorgo biomassa, ou seja, híbridos utilizados com propósitos bioenergéticos. Com o objetivo de avaliar o efeito de saturações de bases crescentes no uso de nitrogênio em híbridos de sorgo biomassa, nós instalamos um experimento quantitativo em casa de vegetação, em delineamento fatorial inteiramente casualizado utilizando dois híbridos de sorgo biomassa (PA 5L60 e PA 5D61) em cinco diferentes saturações de bases (V%) – 15, 35, 40, 50 e 60. Este delineamento experimental nos permitiu estudar cinco diferentes concentrações de alumínio no solo. O crescimento de ambos os híbridos de sorgo foi afetado apenas em V%15. A concentração e conteúdo de N, bem como os indicadores de eficiência de uso do N forma afetados em V%15 em ambos os híbridos; porém, no híbrido PA 5D61 se mostrou menos sensível que o híbrido PA 5L60 nas condições estudadas. A análise de PCA nos mostrou que o híbrido PA 5D61 se mostrou mais tolerante ao alumínio e usa o N mais eficientemente que o híbrido PA 5L60 e, portanto, argumentamos que esse híbrido pode ser utilizado em áreas marginais de baixa fertilidade como produtor de matéria prima para bioenergia.
Referências
Cambraia, J., Pimenta, J. A., Estevão, M. M. & Sant’anna, R. (1989) Aluminum effects on nitrate uptake and reduction in sorghum. Journal of Plant Nutrition, 12, 1435-45. https://doi.org/10.1080/01904168909364048
Caniato, F.F., Guimarães, C.T., Schaffert, R.E., Alves, V.M.C., Kochian, L.V., Borém, A., Klein, P.E. & Magalhaes, J.V. (2007) Genetic diversity for aluminum tolerance in sorghum. Theoretical and Applied Genetics, 114, 863-76. https://doi.org/10.1007/s00122-006-0485-x
Carlin, S.D. & Santos, D.M.M. (2009) Indicadores fisiológicos da interação entre deficit hídrico e acidez do solo em cana-de-açúcar. Pesquisa Agropecuária Brasileira, 44, 1106-13. http://dx.doi.org/10.1590/S0100-204X2009000900006
Conab, C.N.A. (2018) Acompanhamento da safra brasileira: grãos. Observatorio agrícola, 6, 1-129. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-degraos/item/ download/ 22459_07172d10b7104ce2765c1734d0f7e857
Crusciol, C.A.C., Mancuso, M.A.C., Garcia, R.A. & Castro, G.S.A. (2012) Crescimento radicular e aéreo de cultivares de arroz de terras altas em função da calagem. Bragantia, 71, 256-63. http://dx.doi.org/10.1590/S0006-87052012005000018
Cruz, F.J.R., Lobato, A.K.S., Costa, R.C.L., Lopes, M.J.S., Neves, H.K.B., Neto, C.F.O., Silva, M.H.L., Filho, B.G.S., Junior, J.A.L. & Okumura, R.S. (2011) Aluminum negative impact on nitrate reductase activity, nitrogen compounds and morphological parameters in sorghum plants. Australian Journal of Crop Science, 5, 641-45. http://www.cropj.com/june2011.html
Daubresse, C.M., Vedele, F.D., Dechorgnat, J., Chardon, F., Gaufichon, L. & Suzuki, A. (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141-57. https://doi.org/10.1093/aob/mcq028
Ferreira, D.F. (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-42. https://doi.org/10.1590/S1413-70542011000600001
Good, A.G., Shrawat, A.K. & Muench, D.G. (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 9, 597-605. https://doi.org/10.1016/j.tplants.2004.10.008
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electrononica, 4, 1-9. https://palaeo-electronica.org/2001_1/past/past.pdf
Justino, G.C., Cambraia, J., Oliva, M.A. & Oliveira, J.A. (2006) Absorção e redução de nitrato em duas cultivares de arroz na presença de alumínio. Pesquisa Agropecuária Brasileira, 41, 1285-90. http://dx.doi.org/10.1590/S0100-204X2006000800011
Kochian, L.V., Hoekenga, O.A. & Piñeros, M.A. (2004) How Do Crop Plants Tolerate Acid Soils? Mechanisms of Aluminum Tolerance and Phosphorous Efficiency. Annual Review in Plant Biology, 55, 459-93. https://doi.org/10.1146/annurev.arplant.55.031903.141655
Kochian, L.V., Piñeros, M.A., Liu, J. & Magalhaes, J.V. (2015) Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annual Review in Plant Biology, 66, 571-98. https://doi.org/10.1146/annurev-arplant-043014-114822
Liu, J., Piñeros, M.A. & Kochian, L.V. (2014) The role of aluminum sensing and signaling in plant aluminum resistance. Journal of Integrative Plant Biology, 56, 221-30. https://doi.org/10.1111/jipb.12162
Majerowicz, N., Pereira, J.M.S., Medici, L., Bison, O., Pereira, M.B. & Junior, U.M.S. (2002) Estudo da eficiência de uso do nitrogênio em variedades locais e melhoradas de milho. Revista Brasileira de Botânica, 25, 129-36. http://dx.doi.org/10.1590/S0100-84042002000200002
Mariano, E., Leite, J.M., Megda, M.X.V., Dorante, L.T. & Trivelin, P.C.O. (2015) Influence of nitrogen form supply on soil mineral nitrogen dynamics, nitrogen uptake, and productivity of sugarcane. Agronomy Journal, 107, 641-50. https://doi.org/10.2134/agronj14.0422
Maron, L.G., Kirst, M., Mao, C., Milner, M.J., Menossi, M. & Kochian, L.V. (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytologist, 179, 116-28. https://doi.org/10.1111/j.1469-8137.2008.02440.x
Masters, M.D., Black, C.K., Kantola, I.B., Woli, K.P., Voigt, T., David, M.B. & Delucia, E.H. (2016) Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus × giganteus, and prairie. Agriculture Ecosystem and Environment, 216, 51-60. https://doi.org/10.1016/j.agee.2015.09.016
Menezes, C.B., Junior, G.A.C., Silva, L.A., Bernardino, K.C., Souza, F.V., Tardin, F.D. & Schaffert, R.E. (2014) Combining ability of grain sorghum lines selected for aluminum tolerance. Crop Breeding and Applied Biotechnology, 14, 42-48. https://doi.org/10.1590/S1984-70332014000100007
Mokhele, B., Zhan, X., Yang, G. & Zhang, X. (2012) Review: Nitrogen assimilation in crop plants and its affecting factors. Canadian Journal of Plant Science, 92, 399-405. https://doi.org/10.4141/cjps2011-135
Moll, R.H., Kamprath, E.J. & Jackson, W.A. (1982) Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization1. Agronomy Journal, 74, 562-64. https://doi.org/10.2134/agronj1982.00021962007400030037x
Pereira, A.S, Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. Metodologia da Pesquisa Científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Peterson, B.G. & Carl, P. (2019). Performance Analytics: Econometric Tools for Performance and Risk Analysis. R package version 1.5.3. https://CRAN.R-project.org/package=PerformanceAnalytics
Piñeros, M.A., Shaff, J.E., Manslank, H.S., Carvalho, V.M. & Kochian, L.V. (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiology study. Plant Physiology, 137, 231-41. https://doi.org/10.1104/pp.104.047357
Purcino, A.A.C., Alves, V.M.C., Parentoni, S.N., Belele, C.L. & Loguercio, L.L. (2003) Aluminum effects on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to aluminum toxicity. Journal of Plant Nutrition, 26, 31-61. https://doi.org/10.1081/PLN-120016496
Quintal, E.B., Magaña, C.E., Machado, I.E. & Estévez, M.M. (2017) Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8, 1-18. https://doi.org/10.3389/fpls.2017.01767
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Salvador, J.O., Moreira, A., Malavolta, E. & Cabral, C.P. (2000) Influência do alumínio no crescimento e na acumulação de nutrientes em mudas de goiabeira. Revista Brasileira de Ciência do Solo, 24, 787-96. http://dx.doi.org/10.1590/S0100-06832000000400011
Silva, M.J., Carneiro, P.C.S., Carneiro, J.E.S., Damasceno, C.M.B., Parrella, N.N.L.D., Pastina, M.M., Simeone, M.L.F., Schaffert, R.E. & Parrella, R.A.C. (2018) Evaluation of the potential of lines and hybrids of biomass sorghum. Industrial Crops and Products, 125, 379-85. https://doi.org/10.1016/j.indcrop.2018.08.022
Soratto, R.P., Crusciol, C.A.C. & Mello, F.F.C. (2010) Componentes da produção e produtividade de cultivares de arroz e feijão em função de calcário e gesso aplicados na superfície do solo. Bragantia, 69, 965-74. https://doi.org/10.1590/S0006-87052010000400023
Souza, L.C., Nogueira, D.C.S., Machado, L.C., Costa, T.C., Martins, J.T.S., Mendes, C.A.P., Pires, N.M.C., Neto, C.F.O., Conceicao, S.S. & Brito, A.E.A. (2016) Nitrogen compounds, proteins and amino acids in corn subjected to doses of aluminum. African Journal of Agriculture Research, 11, 1519-24. https://doi.org/10.5897/AJAR2015.10758
Souza, L.T., Cambraia, J., Ribeiro, C., Oliveira, J.A. & Silva, L.C. (2015) Effects of aluminum on the elongation and external morphology of root tips in two maize genotypes. Bragantia, 75, 19-25. http://dx.doi.org/10.1590/1678-4499.142
Techio, J.W., Escosteguy, P.A.V., Berres, D. & Zanella, S. (2012) Crescimento de híbridos de milho em solução nutritiva com alumínio. Revista de Ciências Agroveterinárias, 11, 205-12. http://www.revistas.udesc.br/index.php/agroveterinaria/article/view/5255
Vendrame, P.R.S., Brito, O.R., Guimarães, M.F., Martins, E.S. & Becquer, T. (2010) Fertility and acidity status of latossolos (oxisols) under pasture in the Brazilian Cerrado. Anais da Academia Brasileira de Ciências, 82, 1085-94. http://dx.doi.org/10.1590/S0001-37652010000400026
Vitorello, V.A., Capaldi, F.R. & Stefanuto, V.A. (2005) Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17, 129-43. http://dx.doi.org/10.1590/S1677-04202005000100011
Zhao, X.Q. & Shen, R.F. (2018) Aluminum-Nitrogen Interactions in the Soil–Plant System. Frontiers in Plant Science, 9, 1-15. https://doi.org/10.3389/fpls.2018.00807
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Alcindo Sousa Brignoni, Higor Ferreira Silva, Jardélcio Damião Carvalho Ervilha, Fabiano Guimarães Silva, Liliane Santos Camargos, Lucas Anjos Souza
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.