Treinamento intervalado de alta intensidade e estresse oxidativo: uma breve apresentação
DOI:
https://doi.org/10.33448/rsd-v9i8.6478Palavras-chave:
Treinamento intervalado de alta intensidade; Estresse Oxidativo; Radicais Livres.Resumo
O presente estudo descritivo tem o objetivo de realizar um levantamento bibliográfico dos principais estudos acerca do treinamento intervalado de alta intensidade (HIIT) e do estresse oxidativo, possibilitando a sistematização das informações acerca dos seus principais conceitos. Ainda há muitas controvérsias sobre as duas temáticas e a relação entre elas. Depois da seleção dos artigos, foram definidas categorias para descrever os conceitos que norteiam as temáticas apresentadas. Sendo descrito os principais conceitos de HIIT, radicais livres, estresse oxidativo, espécies reativas de oxigênio, sistemas de defesa antioxidante endógenos e exógenos e a relação entre o treinamento intervalado e o estresse oxidativo. Assim, o HIIT pode contribuir de maneira dual sobre o organismo, entre os seus efeitos deletérios são evidenciados o aumento do estresse oxidativo, diminuição do desempenho e a fadiga. Todavia, alguns estudos demonstram que os ajustes fisiológicos do HIIT proporcionam efeitos benéficos na saúde, principalmente na capacidade oxidante, sendo necessário estudos mais aprofundados para identificar outros eventos intracelulares que o HIIT pode ocasionar relacionando ao estresse oxidativo.
Referências
Ammon, U. (2012). Linguistic inequality and its effects on participation in scientific discourse and on global knowledge accumulation – With a closer look at the problems of the second-rank language communities. Applied Linguistics Review, 3(2):333 – 355. http://dx.doi.org/10.1515/applirev-2012-0016.
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014, 360438. https://doi.org/10.1155/2014/360438.
Azzi A. (2018). Many tocopherols, one vitamin E. Molecular aspects of medicine, 61, 92–103. https://doi.org/10.1016/j.mam.2017.06.004.
Belmonte, L., Martins, T. C., Salm, D. C., Emer, A. A., de Oliveira, B. H., Mathias, K., Goldim, M. P., Horewicz, V. V., Piovezan, A. P., Bobinski, F., Petronilho, F., & Martins, D. F. (2018). Effects of Different Parameters of Continuous Training and High-Intensity Interval Training in the Chronic Phase of a Mouse Model of Complex Regional Pain Syndrome Type I. The journal of pain : official journal of the American Pain Society, 19(12), 1445–1460. https://doi.org/10.1016/j.jpain.2018.06.008.
Bernard, K., Logsdon, N. J., Ravi, S., Xie, N., Persons, B. P., Rangarajan, S., Zmijewski, J. W., Mitra, K., Liu, G., Darley-Usmar, V. M., & Thannickal, V. J. (2015). Metabolic Reprogramming Is Required for Myofibroblast Contractility and Differentiation. The Journal of biological chemistry, 290(42), 25427–25438. https://doi.org/10.1074/jbc.M115.646984.
Bloomer R. J. (2008). Effect of exercise on oxidative stress biomarkers. Advances in clinical chemistry, 46, 1–50. https://doi.org/10.1016/s0065-2423(08)00401-0.
Bogdanis, G. C., Stavrinou, P., Fatouros, I. G., Philippou, A., Chatzinikolaou, A., Draganidis, D., Ermidis, G., & Maridaki, M. (2013). Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 61, 171–177. https://doi.org/10.1016/j.fct.2013.05.046.
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports medicine (Auckland, N.Z.), 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x.
Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7–23. https://doi.org/10.1007/s00125-016-4106-1.
Catalá A. (2013). Five decades with polyunsaturated Fatty acids: chemical synthesis, enzymatic formation, lipid peroxidation and its biological effects. Journal of lipids, 2013, 710290. https://doi.org/10.1155/2013/710290.
Christofidou-Solomidou, M., & Muzykantov, V. R. (2006). Antioxidant strategies in respiratory medicine. Treatments in respiratory medicine, 5(1), 47–78. https://doi.org/10.2165/00151829-200605010-00004.
Cipryan L. (2017). IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols. Journal of human kinetics, 56, 139–148. https://doi.org/10.1515/hukin-2017-0031.
Cipryan L. (2018). The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. Journal of sport and health science, 7(3), 363–371. https://doi.org/10.1016/j.jshs.2016.11.001.
Corcoran, A., & Cotter, T. G. (2013). Redox regulation of protein kinases. The FEBS journal, 280(9), 1944–1965. https://doi.org/10.1111/febs.12224.
Deminice, R., Trindade, C. S., Degiovanni, G. C., Garlip, M. R., Portari, G. V., Teixeira, M., & Jordao, A. A. (2010). Oxidative stress biomarkers response to high intensity interval training and relation to performance in competitive swimmers. The Journal of sports medicine and physical fitness, 50(3), 356–362.
Da Silva, H., Costa, R., Neto, J., Júnior, C., Coutinho, I., Macêdo, L., lima, D., Sampaio, L., Sousa, L., Santos, L., & Pessoa, G. (2020). Análise dos efeitos da suplementação de determinados antioxidantes no tratamento adjuvante do câncer. Research, Society and Development, 9(2), e28921964. http://dx.doi.org/10.33448/rsd-v9i2.1964.
Di Bitetti, M. S., & Ferreras, J. A. (2017). Publish (in English) or perish: The effect on citation rate of using languages other than English in scientific publications. Ambio, 46(1), 121–127. https://doi.org/10.1007/s13280-016-0820-7.
Dun, Y., Thomas, R. J., Smith, J. R., Medina-Inojosa, J. R., Squires, R. W., Bonikowske, A. R., Huang, H., Liu, S., & Olson, T. P. (2019). High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction. Cardiovascular diabetology, 18(1), 104. https://doi.org/10.1186/s12933-019-0907-0.
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247. https://doi.org/10.1038/35041687.
Finsterer J. (2012). Biomarkers of peripheral muscle fatigue during exercise. BMC musculoskeletal disorders, 13, 218. https://doi.org/10.1186/1471-2474-13-218.
Fisher, G., Schwartz, D. D., Quindry, J., Barberio, M. D., Foster, E. B., Jones, K. W., & Pascoe, D. D. (2011). Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of applied physiology (Bethesda, Md. : 1985), 110(3), 730–737. https://doi.org/10.1152/japplphysiol.00575.2010.
García-Hermoso, A., Cerrillo-Urbina, A. J., Herrera-Valenzuela, T., Cristi-Montero, C., Saavedra, J. M., & Martínez-Vizcaíno, V. (2016). Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity, 17(6), 531–540. https://doi.org/10.1111/obr.12395
García-Pinillos, F., Cámara-Pérez, J.C., Soto-Hermoso, V.M., & Latorre-Román, P.Á. A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power. J Strength Cond Res. 2017;31(1):146‐153. https://doi:10.1519/JSC.0000000000001473.
Hyeon, S., Lee, H., Yang, Y., & Jeong, W. (2013). Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free radical biology & medicine, 65, 789–799. https://doi.org/10.1016/j.freeradbiomed.2013.08.005.
Jackson, M. J., & McArdle, A. (2011). Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. The Journal of physiology, 589(Pt 9), 2139–2145. https://doi.org/10.1113/jphysiol.2011.206623.
Kalinina, E. V., Chernov, N. N., & Novichkova, M. D. (2014). Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry. Biokhimiia, 79(13), 1562–1583. https://doi.org/10.1134/S0006297914130082.
Lewis, N. A., Redgrave, A., Homer, M., Burden, R., Martinson, W., Moore, B., & Pedlar, C. R. (2018). Alterations in Redox Homeostasis During Recovery From Unexplained Underperformance Syndrome in an Elite International Rower. International journal of sports physiology and performance, 13(1), 107–111. https://doi.org/10.1123/ijspp.2016-0777.
Lipinski B. (2011). Hydroxyl radical and its scavengers in health and disease. Oxidative medicine and cellular longevity, 2011, 809696. https://doi.org/10.1155/2011/809696.
MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity. The Journal of physiology, 595(9), 2915–2930. https://doi.org/10.1113/JP273196.
Marin, D. P., Bolin, A. P., Campoio, T. R., Guerra, B. A., & Otton, R. (2013). Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. International immunopharmacology, 17(2), 462–470. https://doi.org/10.1016/j.intimp.2013.07.009.
Monks, L., Seo, M. W., Kim, H. B., Jung, H. C., & Song, J. K. (2017). High-intensity interval training and athletic performance in Taekwondo athletes. The Journal of sports medicine and physical fitness, 57(10), 1252–1260. https://doi.org/10.23736/S0022-4707.17.06853-0.
Moran, L.K., Gutteridge, J.M.C., & Quinlan GJ. (2001). Thiols in cellular redox signaling and control. Current Medicinal Chemistry, 8(7):763-72. http://doi:10.2174/0929867013372904.
Paixão, C.T., Silva, L.D., Doerzapff, P.B., Granadeiro, R.M.A., Farias, R.L.A., & Santos, S.S. (2014). Fatores de risco para hipoglicemia em pacientes que usam infusão contínua de insulina endovenosa na unidade de terapia intensiva. ABCS Health Sci, 39(3):194-198. http://dx.doi.org/10.7322/abcshs.v39i3.655.
Perry, J. J., Shin, D. S., Getzoff, E. D., & Tainer, J. A. (2010). The structural biochemistry of the superoxide dismutases. Biochimica et biophysica acta, 1804(2), 245–262. https://doi.org/10.1016/j.bbapap.2009.11.004.
Pimenta, M., Bringhenti, I., Souza-Mello, V., Dos Santos Mendes, I. K., Aguila, M. B., & Mandarim-de-Lacerda, C. A. (2015). High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice. Life sciences, 139, 75–82. https://doi.org/10.1016/j.lfs.2015.08.004.
Pingitore, A., Lima, G. P., Mastorci, F., Quinones, A., Iervasi, G., & Vassalle, C. (2015). Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition (Burbank, Los Angeles County, Calif.), 31(7-8), 916–922. https://doi.org/10.1016/j.nut.2015.02.005.
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040.
Ramos-Filho, D., Chicaybam, G., de-Souza-Ferreira, E., Guerra Martinez, C., Kurtenbach, E., Casimiro-Lopes, G., & Galina, A. (2015). High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles. PloS one, 10(6), e0131766. https://doi.org/10.1371/journal.pone.0131766.
Robaczewska, J., Kedziora-Kornatowska, K., Kozakiewicz, M., Zary-Sikorska, E., Pawluk H, Pawliszak W, Carvalho, L.A., & Kędziora, J. (2016). Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension. J Physiol Pharmacol. ,67(3):331-7.
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology: CB, 24(10), R453–R462. https://doi.org/10.1016/j.cub.2014.03.034.
Sheykhlouvand, M., Khalili, E., Agha-Alinejad, H., & Gharaat, M. (2016). Hormonal and Physiological Adaptations to High-Intensity Interval Training in Professional Male Canoe Polo Athletes. Journal of strength and conditioning research, 30(3), 859–866. https://doi.org/10.1519/JSC.0000000000001161.
Steinbacher, P., & Eckl, P. (2015). Impact of oxidative stress on exercising skeletal muscle. Biomolecules, 5(2), 356–377. https://doi.org/10.3390/biom5020356.
Sureda, A., Tejada, S., Bibiloni, M., Tur, J. A., & Pons, A. (2014). Polyphenols: well beyond the antioxidant capacity: polyphenol supplementation and exercise-induced oxidative stress and inflammation. Current pharmaceutical biotechnology, 15(4), 373–379. https://doi.org/10.2174/1389201015666140813123843.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001.
Varamenti, E. I., Kyparos, A., Veskoukis, A. S., Bakou, M., Kalaboka, S., Jamurtas, A. Z., Koutedakis, Y., & Kouretas, D. (2013). Oxidative stress, inflammation and angiogenesis markers in elite female water polo athletes throughout a season. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 61, 3–8. https://doi.org/10.1016/j.fct.2012.12.001.
Vezzoli, A., Dellanoce, C., Mrakic-Sposta, S., Montorsi, M., Moretti, S., Tonini, A., Pratali, L., & Accinni, R. (2016). Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. Oxid Med Cell Longev. 2016;6439037. http://doi:10.1155/2016/6439037.
Zembron-Lacny, A., Naczk, M., Gajewski, M., Ostapiuk-Karolczuk, J., Dziewiecka, H., Kasperska, A., & Szyszka, K. (2010). Changes of muscle-derived cytokines in relation to thiol redox status and reactive oxygen and nitrogen species. Physiological research, 59(6), 945–951.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Lúcio Marques Vieira Souza, Roas De Araújo Costa, Jéssica Denielle Matos dos Santos, Jymmys Lopes Dos Santos, Luana Santos Costa, José Uilien de Oliveira, Roberto Jerônimo dos Santos Silva, Charles Dos Santos Estevam
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.