Pós ricos em fibras oriundos de subprodutos de resíduos de frutos tropicais: um levantamento bibliográfico sobre seus compostos bioativos

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.6803

Palavras-chave:

Compostos fenólicos; Fibras dietéticas; Agroindústria; Carotenóides.

Resumo

O Brasil é um país de grande atividade agrícola, resultando em elevada produção de resíduos agroindustriais. Estes resíduos, na maioria das vezes, não apresentam aplicação industrial, podendo transformar-se em fonte de poluição ambiental. Esse estudo tem como objetivo revisar os compostos bioativos presentes em resíduos de frutos tropicais e verificar seu potencial para aproveitamento na produção de Pós Ricos em Fibras (PRF). Utilizou-se como metodologia uma revisão bibliográfica qualitativa. Os compostos com efetivos efeitos benéficos à saúde revisados foram os compostos fenólicos, carotenóides, vitaminas (C, E e A) e alcalóides (trigonelina e cafeína). Os dados encontrados para os PRF apontam boas propriedades funcionais e alto teor de compostos antioxidantes e fibras dietéticas, permitindo que esses materiais sejam usados na elaboração de novos produtos. Além disso, verificamos que poucos são os estudos que abordam a bioacessibilidade de pós produzidos a partir de resíduos de frutos tropicais, o que confirma a necessidade de mais estudos com essa temática. Ressaltamos que além dos benefícios a saúde, a produção de pós ricos em fibras é uma alternativa importante para reduzir impactos gerados ao ambiente pelo descarte incorreto de resíduos agroindustriais.

Referências

Afaghi, A., Kordi, A., & Sabzmakan, L. (2015). Effect of fibre and low glycemic load diet on blood glucose profile and cardiovascular risk factors in diabetes and poorly controlled diabetic subjects .Glucose intake and utilization in pre-diabetes and diabetes. Part I, 133–145, London, UK: Academic press.

Albishi, T., John, J. A., Al-Khalifa, A. S., & Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal Functional Foods, 5, 590-600.

Amaro, C. A. B., Gonzalez-Cortazar, M., Herrera-Ruiz, M.; Roman-Ramos, R., Aguillar-Santamaria, L., Tortoriello, J., & Jimenez-Ferrer, E. (2014). Hypoglycemic and hypotensive activity of a root extract ossimilazaristolochiifolia, standardized on N-trans-feruloyl-tyramine. Molecules, 19, 11366-11384.

Araújo, N. G., & Barbosa, F. F. (2015). Bebida láctea com leite caprino e soro caprino é alternativa para aproveitamento da polpa de umbu. Revista Institucional Laticínios Cândido Tostes, 70, 85-92.

Ashihara, H. (2015). Plant biochemistry trigonelline biosynthesis in Coffea arabica and Coffea canephora. In: PREEDY, V. R. Coffe in health and disease prevention. Elsevier.

Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2004).Confirmation of the identify of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. Journal of Food Composition and Analysis, 17, 385-396.

Barcia, M. T., Jacques, A. C., Pertuzatti, P. B., & Zambiazi, R. C. (2010). Determinação de ácido ascórbico e tocoferóis em frutas por CLAE. Ciências Agrárias, 31, 381-390.

Birt, D. F., & Jeffery, E. (2013). Flavonoids. Advances in Nutrition, 4, 576-577.

Bonilla-Hermosa, V. A., Duarte, W. F., & Schwan, R. F. (2014). Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology, 166, 142–150.

Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., & Oomah, B.Dx. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45, 24-36.

Cândido, T. L. N., Silva, M. R., & Agostini-Costa, T. S. (2015). Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chemistry, 177, 313-319.

Carvalho, J. M., Maia, G. A., Fonseca, A. V. V., Sousa, P. H. M., & Rodrigues, S. (2015). Effect of processing on physicochemical composition, bioactive compounds and enzymatic activity of yellow mombin (Spondias mombin L.) tropical juice. Journal of Food Science and Technology, 52, 1182-1187.

Chantaro, P., Devahastin, S., & Chiewchan, N. (2008). Production of antioxidant high dietary fiber powder from carrot peels. LWT - Food Science and Technology, 41, 1987-1994.

Chaplin, M. F. (2003). Fibre and water binding. Proceedings of the Nutrition Society, 62, 223-227.

Cordeiro, B. M. P. C., Santos, N. D. L., Ferreira, M. R. A., Araujo, L. C. C., Junior, A. R. C., & Santos, A. D. C. (2018). Hexane extract from Spondias tuberose (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complementary and Alternative Medicine,18 (1).

Cuppari, L. (2002). Nutrição clínica no adulto – Guia de medicina ambulatorial e hospitalar (UNIFESP/Escola Paulista de Medicina).1 ed. São Paulo: Manole.

Delpino-Ruis, A., Eras, J., Vilaró, F., Cubero, M. A., Balcells, M., & Canela-Garayoa, R. (2015). Characterisation of phenolic compounds in processed fibres from the juice industry. Food Chemistry, 172, 575-584.

Dutra, R. L. T., Dantas, A. M., Marques, D. de A., Batista, J. D. F., Meireles, B. R. L. de A., de Magalhães Cordeiro, Â. M. T., & Borges, G. da S. C. (2017). Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulatedgastrointestinal conditions. Food Research International, 100, 650–657.

Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee byproducts. Food Research International, 46, 488-495.

FAO. (2020). Food and Agriculture Organization of the United Nations. Acesso em 13 julho 2020, em http://faostat.fao.org/site/609/DesktopDefault.aspx?PageID=609#ancor

Farag, M. A., Porzel, A., & Wessjohann, L. A. (2015). Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite finger printing by NMR. Journal of Pharmaceutical and Biomedical Analysis, 115, 383-387.

Feng, K., Hu, W., Jiang, A., Xu, Y., Sarengaowa Li, X., &Bai, X. (2015). Growth Potential of Listeria Monocytogenes and Staphylococcus Aureus on Fresh-Cut Tropical Fruits. Journal of food science, 80, M2548-M2454.

Franca, A. S., & Oliveira, L. S. (2009). Coffee Processing Solid Wastes: Current Uses and Future Perspectives. In: Ashworth, G, S., Azevedo, P. Agricultural Wastes (Agricultural issues and Policies Series). 155-189.

Garau, M. C., Simal, S., Rossello, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104, 1014–1024.

Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, A. M., Afrin, S., Cianciosi, D., Reboredo-Rodriguez, P., Varela-Lopez, A., Quiles, J. L., Mezzetti, B., & Battino, M. (2017). The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annalsof the New York Academy of Sciences, 1398, 62-71.

Gonzáles, G. B., Raes, K., Vanhoutte, H., Coelus, S., Smagghe, G., & Camp, J. V. (2015). Liquid chromatography-mass spectrometry coupled with multi variate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. Journal of Chromatography A,1402, 60-70.

Gouvêa, R. F., Ribeiro, L. O., Souza, E. F., Penha, E. M., Matta, V. M., & Freitas, S. P. (2017). Effect of enzimatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of Food Science and Technology, 54, 2176-2180.

Grilo, E. C., Costa, P. N., Lima, M. S. R., Ribeiro, P. P. C., Beserra, A. F. L., & Dimenstein, R. (2013). Determinação de vitamina E na castanha de caju e sua relação com a recomendação nutricional em humanos. Revista do Instituto Adolfo Lutz, 72 (1), 41-46.

Honorato, A. C., Dias, C. B. R., Souza, E. B., Carvalho, I. R. B., & Sousa, K. S. M. (2015). Parâmetros físico-químicos de polpas de fruta produzidas na cidade de Petrolina-PE. Revista Verde, 10, 01-05.

IBRAF. (2017). Brazilian Institute of Fruits. Brazilian fruits in demand. Recuperado de http://www.ibraf.org.br/imprensa/0901_FrutasBrasileirasAscensao.asp

Jara-Palacios, M. J., Gonçalves, S., Hernanz, D., Heredia, F. J., & Romano, A. (2018). Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International, 109, 433-439

José, F. J. S., Collado-Fernández, M., & López, R. (2018). Sensory evaluation of biscuits enriched with artichoke fiber-rich powders (Cynaras colymus L.). Food Science & Nutrition, 6, 160–167.

Júnior, H. P. L., & Lemos, A. L. A. (2010).Vitamina A. Diagn Tratamento, 15 (3), 122-124.

Kinsella, J. E. Functional properties of proteins in foods. Critical Reviews in Foods Science and Nutritional, 1(3), 219-280, 1976.

Kudanga, T.; Nemadziva, B., & Roes-Hill, M. (2017). Laccase catalysis for the synthesis of bioactive compounds. App Microbiol Biotechnol, 101, 13-33.

Larrauri, J. A. (1999). New approaches in the preparation of high dietary fiber powders from fruit by-products. Food Science & Technology, (10), 3-8.

Leão, D. P., Franca, A. S., Oliveira, L. S., Bastos, R., & Coimbra, M.A. (2017). Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chemistry, 225, 146-153.

Lopéz-Vargas, J., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2013). Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passifloraedulis var. flavicarpa) co-products. Food Research International, 51, 756–763.

Macrae, R. (1987). Nitrogenous componentes. In: Clarke, R. J., & Macrae, R. Coffee Technology. 2, London.

Melo, E. A., & Andrade, R. A. M. S. (2010). Compostos bioativos e potencial antioxidante de frutos do umbuzeiro. Alimentos e Nutrição, 21 (3), 453-457.

Melo, E. A., Maciel, M. I. S., Lima, V. L. A. G., & Araújo, C. R. (2008). Teor de fenólicos totais e capacidade antioxidante de polpas congeladas de frutas. Alimentos e Nutrição, 19 (1), 67-72.

Menezes, J. S., Campos, V. O., & Costa, T. A. C. (2012). Desenvolvimento de dispositivo caseiro para dessalinização de água salobra a partir de sementes de umbu (Spondias tuberosa Arruda Câmara). Química nova, 35, 379-385.

Molino, S., Fernández-Miyakawa, M., & Giovando, S. (2018). Study of antioxidant capacity and metabolization of quebracho and chestnut tannins through in vitro gastrointestinal digestion-fermentation. Journal of Functional Foods, 49, 188-195.

Monteiro, M. C., &Trugo, L. C. (2005). Determinação de compostos bioativos em amostras comerciais de café torrado. Quimica Nova, 28 (4), 637-641.

Murillo, E., Giuffrida, D., Menchaca, D.; Dugo, P., Torre, G., Meléndez-Martinez, A. J. & Mondello, L. (2013). Native carotenoids composition of some tropical fruits. Food Chemistry, 140, 825-836.

Murthy, P. S., & Naidu, M. (2012). Sustainable management of coffee industry by products and value addition – a review. Resources, Conservation and Recycling, 66, 45-58.

O’keefe, J. H., Bhatti, S. K., Patil, H. R., Dinicolantonio, J. J., Lucan, S. C., Lavie, C. J. J. (2013). Effects of Habitual Coffee Consumption on Cardiometabolic Disease, Cardiovascular Health, and All-Cause Mortality. American College of Cardiology, 62, 1043-1051.

Oliveira, C. F. P., Souza, S. M. A., Martinez, E. A., Guanais, A. L. S. R., Silva, C. M. R. (2013).Estudio Del proceso de deshidratación osmótica de umbu (Spondias tuberosa Arruda Câmara). Semina: Ciências Agrárias, 34 (2), 729-740.

Omena, C. M. B., Valentim, I. B., Guedes, G. S., Rabelo, L. A., Mano, C. M., Bechara, E. J. H., Sawaya, A. C. H. F., Trevisan, M. T. S., Costa, J. G., Ferreira, R. C. S., Sant’ana, A. E. G. & Goulart, M. O. F. (2012). Antioxidant, anti-acetylcholinesterase and cytotoxic activitie of ethanol extractas of peel, pulp and seeds of exotic Brazilian fruits. Food Research International, 49, 334-344.

Ozboy-Ozbas, O., Seker, I. T., & Gokbulut, I. (2010). Effects of Resistant Starch, Apricot Kernel Flour, and Fiber-rich Fruit Powders on Low-fat Cookie Quality. Food Science Biotechnol., 19, 979-986.

Pagnussatt, F. A., Lima, V. R., Dora, C. L., Costa, J. A. V., Putaux, K., & Badiale-Furlong, E. (2016). Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food Chemistry, 211, 616-623.

Pellegrini, M., Lucas-Gonzalez, R., Sayas-Barberá, E., Fernández-Lopez, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2018). Bioaccessibility of phenolic compounds and antioxidant capacity of chia (Salvia hispanica L.) seeds. Plant Foods Hum Nutr, 73, 47-53.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Pla, M. F. E., Uribe, M., Fissore, E. N., Gerschenson, L. N., & Rojas, A. M. (2010). Influence of the isolation procedure on the characteristics of fiber-rich products obtained from quince wastes. Journal of Food Engineering, 96, 239-248.

Queiroz, D., Paiva, A. A., Pedraza, D. F., Cunha, M. A. L., Esteves, G. H., Luna, J. G., & Diniz, A. S. (2013). Deficiência de vitamina A e fatores associados em crianças de áreas urbanas. Revista de Saúde pública, 47 (2), 248-256.

Ramalho, A. (2010). Vitamina A. São Paulo: ILSI Brasil-International Life Sciences Institute do Brasil. Funções plenamente reconhecidas de nutrientes, 4.

Randhawa, M. A., Khan, A. A., Javed, M. S., & Sajid, M. W. (2015). Handbook of fertility nutrition, diet, lifestyle and reproductive health. Chapter18 – green leafy vegetables: a health promoting source. (pp. 205–220). London, UK: Academic press.

Resende, L. M., Franca, A. S., & Oliveira, L. S. (2019). Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evalution as source of dietary fibers and natural antioxidants. Food Chemistry, 270, 53-60.

Ribeiro, G. P., Andrade, A. P. C., Daniels, J., & Seibel, N. F. (2014). Development of soy based beverages with papaya and mango pulps. Acta Scientiarum Technology, 32 (2), 341-347.

Rocha, S. C. S., Souza, J. C., Alsina, O. L. S., & Medeiros, M. F. D. (2011). Drying of tropical fruit pulps: spouted bed process optimization as a function of pulp composition. Drying Technology, 29, 1587-1599.

Rodríguez-Roque, M. J., Rojas-Grau, M. A., Elez-Martínez, P., & Martín-Belloso, O. (2013). Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. Journal of Agricultural and Food Chemistry, 61, 1859−1867.

Rosa, J. S., Godoy, R. L. O., Neto, J. O., Campos, R. S., Matta, V. M., Freire, C. A., Silva, A. L., & Souza, R. S. (2007). Desenvolvimento de um método de análise de vitamina C em alimentos por cromatografia líquida de alta eficiência e exclusão iônica. Ciência e Tecnologia de Alimentos, 27 (4), 837-846.

Saura-Calixto, F., García-Alonso, A., Coñi, I., & Bravo, L. (2000). In vitro determination of the indigestible fraction in foods: analternative to dietary fiber analysis. Journal of Agricultural and Food Chemistry, 48, 3342-3347.

Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60, 11195-11200.

Sentanin, M. A., & Amaya, D. B. R. (2007).Teores de carotenóides em mamão e pêssego determinados por cromatografia líquida de alta eficiência. Ciênciae Tecnologia de Alimentos, 27, 13-19.

Servillo, L., Giovane, A., Balestrieri, M. L., Cautela, D., & Castaldom, D. (2011). Proline derivates in fruits of bergamot (Citrus bergamia Rissoet Poit): Presence of n-methyl-l-prolineand 4-hydroxy-l-proline betaine. Journal of Agricultural and Food Chemistry, 59, 274-281.

Sigma-Aldrich. Disponível em: <https://www.sigmaaldrich.com/>. Acesso em: 13 jul. 2020.

Silva, L. M. R., Figueiredo, E. A. T., Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W., Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398-404.

Soares, S. E. (2002). Ácidos fenólicos como antioxidantes. Revista de Nutrição, 15.

Song, X., Zhu, W., Pei, Y., Ai, Z., & Chen, J. (2013). Effects of wheat bran with different colors on the qualities of dry noodles. Journal of Cereal Science, 58, 400-407.

Sorensen, M. D.; Hsi, R. S.; Chi, T.; Shara, N.; Wactawski-Wend, J.; Kahn, J. A. & Stoller, M. L. (2014). Dietary intake of fibre, fruit and vegetables decreases the risk of incident kidney stones in women: A women’s health initiative report. The Journal of Urology, 192, 1694-1699.

Strawn, L. K.; Scheneider, K. R. & Danyluk, M. D. (2011). Microbial safety of tropical fruits. Critical Reviews in Food Science and Nutrition, 51, 132-145.

Tavares, J. T. Q.; Silva, C. L.; Carvalho, L. A.; Silva, M. A.; Santos, C. M. G. (2000). Estabilidade do ácidoascórbico em suco de laranja submetido a diferentes tratamentos. Magistra, Cruz das Almas, 12 (1/2).

Teixeira, L.; Pinto, C. F. D.; Kessler, A. M. & Trevizan, L. (2019). Effect of partial substitution of rice with sorghum and inclusion of hydrolysable tannins on digestibility and postprandial glycemia in adult dogs. Plos Ones, 14 (5).

Tian, Y.; Liimatainen, J.; Alanne, A.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H. & Yang, B. (2017). Phenolic compounds extract by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry, 220, 226-287.

Toschi, T. G.; Cardenia, V.; Bonaga, G.; Mandrioli, M.; Rodriguez estrada, M. T. (2014). Coffee Silverskin: Characterization, Possibles Uses, and Safety Aspects. Journal of Agricultural and Food Chemistry, 62, 10836-10844.

Vitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19, 451–463.

Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E.; Fernández-López, J.; Sendra, E., Sayas-Barberá, E., Navarro, C. & Pérez-Álvarez, J. A. (2012). Chemical, physico-chemival and funcional properties of pomegranate (Punicagranatum L.) bagasses powder co-product. Journal of Food Engineering, 110, 220-224.

Zeraik, M. L.; Queiroz, E. F.; Marcourt, L.; Ciclet, O.; Castro-Gamboa, I.; Silva, D. H. S.; Guendet, M.; Bolzani, V. S. & Wolfender, J. (2016). Antioxidants, quinine reductase inducers and acetylcholinesterase inhibitors from Spondias tuberosa fruits. Journal of Functional Foods, 21, 396-405.

Zurita, J., Díaz-Rubio, M. E., & Saura-Calixto, F. (2012). Improved procedure to determinate non-extractable polymeric proanthocyanidins in plant foods. International Journal of Food Sciences and Nutrition, 63(2), 936-939.

Wang, S., Amigo-Benavent, M., Mateos, R.; Bravo, L., & Sarriá, B. (2017). Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. International Journal of Food Sciences and Nutrition, 68 (2), 188-200.

White, B. L., Howard, L. R., & Prior, R. L. (2010).Release of bound procyanidins from cran-berry pomace by alkaline hydrolysis. Journal of Agricultural and Food Chemistry, 58, 7572-7579.

Yoshinari, O., Sato, H., & Igarashi, K. (2009). Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci. Biotechnol. Biochem., 73, 1033-1041.

Downloads

Publicado

13/08/2020

Como Citar

CANGUSSU, L. B.; FRONZA, P.; CAVALCANTI, W. M. Pós ricos em fibras oriundos de subprodutos de resíduos de frutos tropicais: um levantamento bibliográfico sobre seus compostos bioativos. Research, Society and Development, [S. l.], v. 9, n. 9, p. e80996803, 2020. DOI: 10.33448/rsd-v9i9.6803. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6803. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão