Treino intervalado, reatividade pressórica e óxido nítrico: uma revisão crítica

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.7029

Palavras-chave:

Hipertensão arterial; Exercício Físico; Óxido nítrico.

Resumo

Introdução: O controle da pressão arterial se dá através da interação entre o sistema nervoso autônomo e substâncias secretadas por diferentes tipos de células, entre elas as endoteliais, fazendo com que alterações em algum desses mecanismos acarretem o desenvolvimento da hipertensão arterial. A prática de exercícios físicos se mostra como um tratamento não-farmacológico capaz de reduzir significativamente tanto a pressão arterial sistólica como a diastólica, atenuar a reatividade pressórica e aumentar a biodisponibilidade de óxido nítrico. Objetivo: A presente revisão crítica tem como objetivo realizar um levantamento bibliográfico dos principais estudos sobre exercícios intervalados, reatividade pressórica e óxido nítrico. Metodologia: Foram selecionados artigos com tais temáticas e depois classificados em categorias com as definições dos conceitos. Conclusão: Portanto, sugere-se o treino intervalado para promover alterações na reatividade vascular e nas concentrações de óxido nítrico dependerá da intensidade e volume.

Biografia do Autor

Lúcio Marques Vieira Souza, Universidade Federal de Sergipe

http://lattes.cnpq.br/8914381274744679

Referências

Ando, J., & Yamamoto, K. (2011). Effects of shear stress and stretch on endothelial function. Antioxidants & redox signaling, 15(5), 1389–1403. https://doi.org/10.1089/ars.2010.3361

Antunes-Correa, L. M., Nobre, T. S., Groehs, R. V., Alves, M. J., Fernandes, T., Couto, G. K., Rondon, M. U., Oliveira, P., Lima, M., Mathias, W., Brum, P. C., Mady, C., Almeida, D. R., Rossoni, L. V., Oliveira, E. M., Middlekauff, H. R., & Negrao, C. E. (2014). Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. American journal of physiology. Heart and circulatory physiology, 307(11), H1655–H1666. https://doi.org/10.1152/ajpheart.00136.2014

Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports medicine (Auckland, N.Z.), 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x

Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports medicine (Auckland, N.Z.), 43(10), 927–954. https://doi.org/10.1007/s40279-013-0066-5

Bocalini, D. S., Bergamin, M., Evangelista, A. L., Rica, R. L., Pontes, F. L., Junior, Figueira, A., Junior, Serra, A. J., Rossi, E. M., Tucci, P., & Dos Santos, L. (2017). Post-exercise hypotension and heart rate variability response after water- and land-ergometry exercise in hypertensive patients. PloS one, 12(6), e0180216. https://doi.org/10.1371/journal.pone.0180216

Carvalho, R. S., Pires, C. M., Junqueira, G. C., Freitas, D., & Marchi-Alves, L. M. (2015). Hypotensive response magnitude and duration in hypertensives: continuous and interval exercise. Arquivos brasileiros de cardiologia, 104(3), 234–241. https://doi.org/10.5935/abc.20140193

Chen, J., Gu, D., Jaquish, C. E., Chen, C. S., Rao, D. C., Liu, D., Hixson, J. E., Hamm, L. L., Gu, C. C., Whelton, P. K., He, J., & GenSalt Collaborative Research Group (2008). Association between blood pressure responses to the cold pressor test and dietary sodium intervention in a Chinese population. Archives of internal medicine, 168(16), 1740–1746. https://doi.org/10.1001/archinte.168.16.1740

Chies, A. B., de Souza Rossignoli, P., & Daniel, E. F. (2010). Exercise increases the angiotensin II effects in isolated portal vein of trained rats. Peptides, 31(5), 883–888. https://doi.org/10.1016/j.peptides.2010.02.011

Cornelissen, V. A., & Smart, N. A. (2013). Exercise training for blood pressure: a systematic review and meta-analysis. Journal of the American Heart Association, 2(1), e004473. https://doi.org/10.1161/JAHA.112.004473

Del Vecchio, F., Galliano, L., & Coswig, V. (2014). Aplicações do Exercício Intermitente na Síndrome Metabólica. Revista Brasileira de Atividade Física e Saúde, 18(6), 669-687. http://dx.doi.org/10.12820/rbafs.v.18n6p669

De Leeuw P. W. (1999). How do angiotensin II receptor antagonists affect blood pressure?. The American journal of cardiology, 84(2A), 5K–6K. https://doi.org/10.1016/s0002-9149(99)00399-9

DeMartino, A. W., Kim-Shapiro, D. B., Patel, R. P., & Gladwin, M. T. (2019). Nitrite and nitrate chemical biology and signalling. British journal of pharmacology, 176(2), 228–245. https://doi.org/10.1111/bph.14484

Helms, C. C., Gladwin, M. T., & Kim-Shapiro, D. B. (2018). Erythrocytes and Vascular Function: Oxygen and Nitric Oxide. Frontiers in physiology, 9, 125. https://doi.org/10.3389/fphys.2018.00125

Faria, T., Targueta, G. P., Angeli, J. K., Almeida, E. A., Stefanon, I., Vassallo, D. V., & Lizardo, J. H. (2010). Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats. European journal of applied physiology, 110(2), 359–366. https://doi.org/10.1007/s00421-010-1508-5

Fonseca, F. C. A., Coelho, R. Z., Nicolato, R., Malloy-Diniz, L. F., & Silva Filho, H. C. (2009). A influência de fatores emocionais sobre a hipertensão arterial. Jornal Brasileiro de Psiquiatria, 58(2), 128-134. https://doi.org/10.1590/S0047-20852009000200011.

Gayda, M., Normandin, E., Meyer, P., Juneau, M., Haykowsky, M., & Nigam, A. (2012). Central hemodynamic responses during acute high-intensity interval exercise and moderate continuous exercise in patients with heart failure. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 37(6), 1171–1178. https://doi.org/10.1139/h2012-109

Ghasemi, M., Mayasi, Y., Hannoun, A., Eslami, S. M., & Carandang, R. (2018). Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience, 376, 48–71. https://doi.org/10.1016/j.neuroscience.2018.02.017

Ghisi, G. L., Durieux, A., Pinho, R., & Benetti, M. Physical exercise and endothelial dysfunction. Arq Bras Cardiol. 2010;95(5):e130-e137. https://doi.org/10.1590/s0066-782x2010001500025

Gibala, M. J., & Jones, A. M. (2013). Physiological and performance adaptations to high-intensity interval training. Nestle Nutrition Institute workshop series, 76, 51–60. https://doi.org/10.1159/000350256

Groehs, R. V., Toschi-Dias, E., Antunes-Correa, L. M., Trevizan, P. F., Rondon, M. U., Oliveira, P., Alves, M. J., Almeida, D. R., Middlekauff, H. R., & Negrão, C. E. (2015). Exercise training prevents the deterioration in the arterial baroreflex control of sympathetic nerve activity in chronic heart failure patients. American journal of physiology. Heart and circulatory physiology, 308(9), H1096–H1102. https://doi.org/10.1152/ajpheart.00723.2014

Guiraud, T., Nigam, A., Gremeaux, V., Meyer, P., Juneau, M., & Bosquet, L. (2012). High-intensity interval training in cardiac rehabilitation. Sports medicine (Auckland, N.Z.), 42(7), 587–605. https://doi.org/10.2165/11631910-000000000-00000

Higashi, Y., & Yoshizumi, M. (2004). Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacology & therapeutics, 102(1), 87–96. https://doi.org/10.1016 /j.pharmthera.2004.02.003

Kemi, O. J., & Wisloff, U. (2010). High-intensity aerobic exercise training improves the heart in health and disease. Journal of cardiopulmonary rehabilitation and prevention, 30(1), 2–11. https://doi.org/10.1097/HCR.0b013e3181c56b89

Lobato, N. S., Filgueira, F. P., Akamine, E. H., Tostes, R. C., Carvalho, M. H., & Fortes, Z. B. (2012). Mechanisms of endothelial dysfunction in obesity-associated hypertension. Brazilian journal of medical and biological research, 45(5), 392–400. https://doi.org/10.1590/s0100-879x2012007500058.

Long, X., Bratz, I. N., Alloosh, M., Edwards, J. M., & Sturek, M. (2010). Short-term exercise training prevents micro- and macrovascular disease following coronary stenting. Journal of applied physiology (Bethesda, Md.: 1985), 108(6), 1766–1774. https://doi.org/10.1152/japplphysiol.01014.2009

Maeda S., Miyauchi, T., Kakiyama, T., Sugawara, J., Iemitsu, M., Irukayama-Tomobe, Y., Murakami, H., Kumagai, Y., Kuno, S., & Matsuda, M. (2001). Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life sciences, 69(9), 1005–1016. https://doi.org/10.1016/s0024-3205(01)01192-4

Malachias, M. V. B., Plavnik, F. L., Machado, C. A., Malta, D., Scala, L. C. N., & Fuchs, S. (2016). 7ª Diretriz Brasileira de Hipertensão Arterial: Capítulo 1 - Conceituação, Epidemiologia e Prevenção Primária. Arquivos Brasileiros de Cardiologia, 107(3, Suppl. 3), 1-6. https://doi.org/10.5935/abc.20160151.

Mantzarlis, K., Tsolaki, V., & Zakynthinos, E. (2017). Role of Oxidative Stress and Mitochondrial Dysfunction in Sepsis and Potential Therapies. Oxidative medicine and cellular longevity, 2017, 5985209. https://doi.org/10.1155/2017/5985209

Molmen-Hansen, H. E., Stolen, T., Tjonna, A. E., Aamot, I. L., Ekeberg, I. S., Tyldum, G. A., Wisloff, U., Ingul, C. B., & Stoylen, A. (2012). Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. European journal of preventive cardiology, 19(2), 151–160. https://doi.org/10.1177/1741826711400512

Münzel, T., & Daiber, A. (2018). Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors?. Vascular pharmacology, 102, 1–10. https://doi.org/10.1016/j.vph.2017.11.003

Neves, J. A., Neves, J. A., & Oliveira, R. C. M. (2016). Biomarkers of endothelial function in cardiovascular diseases: hypertension. Jornal Vascular Brasileiro, 15(3), 224-233. Epub October 24, 2016.https://doi.org/10.1590/1677-5449.000316.

Neves, M. F., Cunha, A. R., Cunha, M. R., Gismondi, R. A., & Oigman, W. (2018). The Role of Renin-Angiotensin-Aldosterone System and Its New Components in Arterial Stiffness and Vascular Aging. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 25(2), 137–145. https://doi.org/10.1007/s40292-018-0252-5

Nobre, F., Coelho, E. B., Lopes, P. C., Geleilete, T. J. M. (2013). Hipertensão arterial sistêmica primária. Medicina (Ribeirão Preto), 46(3): 256-72. https://doi.org/10.11 606/issn.2176-7262.v46i3p256-272

Nogueira, I. C., Santos, Z. M. S. A., Mont'Alverne, D. G. B., Martins, A. B. T., Magalhães, C. B. A. (2012). Efeitos do exercício físico no controle da hipertensão arterial em idosos: uma revisão sistemática. Revista Brasileira de Geriatria e Gerontologia, 15(3), 587-601. https://doi.org/10.1590/S1809-98232012000300019

Ogrodowczyk, M., Dettlaff, K., & Jelinska, A. (2016). Beta-Blockers: Current State of Knowledge and Perspectives. Mini reviews in medicinal chemistry, 16(1), 40–54. https://doi.org/10.2174/1389557515666151016125948

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle /1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., Ray, C. A., & American College of Sports Medicine (2004). American College of Sports Medicine position stand. Exercise and hypertension. Medicine and science in sports and exercise, 36(3), 533–553. https://doi.org/10.1249/01.mss.0000115224.88514.3a

Pimenta, F. C., Montrezol, F. T., Dourado, V. Z., da Silva, L., Borba, G. A., de Oliveira Vieira, W., & Medeiros, A. (2019). High-intensity interval exercise promotes post-exercise hypotension of greater magnitude compared to moderate-intensity continuous exercise. European journal of applied physiology, 119(5), 1235–1243. https://doi.org/10.1007/s00421-019-04114-9

Pinho, R. A., Araújo, M. C., Ghisi, G. L., & Benetti, M. (2010). Doença arterial coronariana, exercício físico e estresse oxidativo [Coronary heart disease, physical exercise and oxidative stress]. Arquivos brasileiros de cardiologia, 94(4), 549–555. https://doi.org/10.1590/s0066-782x2010000400018

Sabbahi, A., Arena, R., Elokda, A., & Phillips, S. A. (2016). Exercise and Hypertension: Uncovering the Mechanisms of Vascular Control. Progress in cardiovascular diseases, 59(3), 226–234. https://doi.org/10.1016/j.pcad.2016.09.006

Schoenfeld, Brad & Dawes, Jay. (2009). High-Intensity Interval Training: Applications for General Fitness Training. Strength & Conditioning Journal. 31. 44-46. https://doi.org/10.1519/SSC.0b013e3181c2a844

Silva, I. B. M. M., Oliveira, A. C., Brito, R. S., Coertjens, M. (2013). Repercussões pressóricas do frio local: a crioterapia deve ser administrada com precaução em pacientes hipertensos? Fisioter Bras, 14(4). 306-311. http://dx.doi.org/10.33233/fb.v14i4

Souza, L. M. V., Costa, R. de A., Santos, J. D. M. dos, Santos, J. L. dos, Costa, L. S., Oliveira, J. U. de, Silva, R. J. dos S., & Estevam, C. dos S. (2020). Treinamento intervalado de alta intensidade e estresse oxidativo: uma breve apresentação. Research, Society and Development, 9(8), e741986478. https://doi.org/10.33448/rsd-v9i8.6478

Souza Junior, T. P., Asano, R. Y., Prestes, J., Sales, M. P. M., Coelho, J. M. O., & Simões, H. G. (2012). Óxido nítrico e exercício: uma revisão. Revista da Educação Física / UEM, 23(3), 469-481. https://doi.org/10.4025/reveducfis.v23i3.11738.

Stewart, K. J., Sung, J., Silber, H. A., Fleg, J. L., Kelemen, M. D., Turner, K. L., Bacher, A. C., Dobrosielski, D. A., DeRegis, J. R., Shapiro, E. P., & Ouyang, P. (2004). Exaggerated exercise blood pressure is related to impaired endothelial vasodilator function. American journal of hypertension, 17(4), 314–320. https://doi.org/10.1016/S0895-7061(03)01003-3

Tousoulis, D., Kampoli, A. M., Tentolouris, C., Papageorgiou, N., & Stefanadis, C. (2012). The role of nitric oxide on endothelial function. Current vascular pharmacology, 10(1), 4–18. https://doi.org/10.2174/157016112798829760

Vieira, Fernando Luiz Herkenhoff & Lima, Eliudem Galvão. (2007). Laboratorial stress tests and arterial hypertension. Revista Brasileira de Hipertensão, 14(2): 98-103.

Weber, M. A., Schiffrin, E. L., White, W. B., Mann, S., Lindholm, L. H., Kenerson, J. G., Flack, J. M., Carter, B. L., Materson, B. J., Ram, C. V., Cohen, D. L., Cadet, J. C., Jean-Charles, R. R., Taler, S., Kountz, D., Townsend, R. R., Chalmers, J., Ramirez, A. J., Bakris, G. L., Wang, J., … Harrap, S. B. (2014). Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. Journal of clinical hypertension (Greenwich, Conn.), 16(1), 14–26. https://doi.org/10.1111/jch.12237.

Widmer, R. J., & Lerman, A. (2014). Endothelial dysfunction and cardiovascular disease. Global cardiology science & practice, 2014(3), 291–308. https://doi.org/10.5339/gcsp.2014.43.

Zanchetti A. (2004). Clinical pharmacodynamics of nebivolol: new evidence of nitric oxide-mediated vasodilating activity and peculiar haemodynamic properties in hypertensive patients. Blood pressure. Supplement, 1, 17–32. https://doi.org/10.1080/08038020410016548

Downloads

Publicado

15/08/2020

Como Citar

SANTOS, M. E. dos; SANTOS, J. L. dos; COSTA, R. de A.; LIMA, C. A.; SOUZA, L. M. V. . Treino intervalado, reatividade pressórica e óxido nítrico: uma revisão crítica. Research, Society and Development, [S. l.], v. 9, n. 9, p. e194997029, 2020. DOI: 10.33448/rsd-v9i9.7029. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7029. Acesso em: 23 nov. 2024.

Edição

Seção

Artigos de Revisão