Multifractal analysis of standardize precipitation index
DOI:
https://doi.org/10.33448/rsd-v10i7.16535Keywords:
Multrifactal; Precipitation; SPI; Pernambuco.Abstract
In many tropical countries including Brazil it has been observed that changes in rainfall patterns cause severe floods and with a tendency to continue to worsen during the 21st century. In order to reduce the consequences on human life and health, economic activities, ecosystems and infrastructure with efficient protection measures in mind, it is necessary to develop the most reliable forecasting models. The first step in this direction is a detailed analysis of the climatic variability in the region. In this work, we analyze the multifractal properties of the time series of Standardized Precipitation Index (SPI) developed to classify dry/wet conditions according to severity. This index was calculated for different time scales (1,3,6 and 12 months) and analyzed using the Multifractal detrended fluctuation analysis method. The multifractal spectrum complexity parameters (position of maximum, width and asymmetry) together with Hurst's exponent showed that the SPI series are generated by the multifractal process with stronger multifractality and stronger persistence for larger scales of rainfall accumulation.
References
Abramowitz, M., Stegun, I. A., & Romer, R. H. (1988). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Journal of Physics, 56(10), 958–958. http://aapt.scitation.org/doi/10.1119/1.15378
Adarsh, S., Kumar, D. N., Deepthi, B., Gayathri, G., Aswathy, S. S., & Bhagyasree, S. (2019). Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. International Journal of Climatology, 39(11), 4234–4255. John Wiley & Sons, Ltd. https://doi.org/10.1002/joc.6070
Asadi Zarch, M. A., Sivakumar, B., & Sharma, A. (2015). Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). Journal of Hydrology, 526, 183–195. http://www.sciencedirect.com/science/article/pii/S002216941400763X
Barreto, I. D. de C., & Stosic, T. (2021). Multifractal analysis of rainfall in coastal area in Pernambuco, Brazil. Research, Society and Development, 10(2), e15410212424. https://rsdjournal.org/index.php/rsd/article/view/12424
Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2015). Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index. Water Resources Management, 29(2), 557–573. https://doi.org/10.1007/s11269-014-0842-5
Chadwick, R., Good, P., Martin, G., & Rowell, D. P. (2016). Large rainfall changes consistently projected over substantial areas of tropical land. Nature Climate Change, 6(2), 177–181. Nature Publishing Group. http://www.nature.com/articles/nclimate2805
Douglas, E. M., & Barros, A. P. (2003). Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United States. Journal of Hydrometeorology, 4(6), 1012–1024. http://journals.ametsoc.org/doi/10.1175/1525-7541(2003)004%3C1012:PMPEUM%3E2.0.CO;2
Fuwape, I. A., Ogunjo, S. T., Oluyamo, S. S., & Rabiu, A. B. (2017). Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theoretical and Applied Climatology, 130(1), 119–132. https://doi.org/10.1007/s00704-016-1867-x
García-Marín, A. P., Estévez, J., Medina-Cobo, M. T., & Ayuso-Muñoz, J. L. (2015). Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 529, 106–119. https://linkinghub.elsevier.com/retrieve/pii/S0022169415005181
García‐Marín, A. P., Jiménez‐Hornero, F. J., & Ayuso‐Muñoz, J. L. (2008). Multifractal analysis as a tool for validating a rainfall model. Hydrological Processes, 22(14), 2672–2688. http://doi.wiley.com/10.1002/hyp.6864
Hasegawa, A., Gusyev, M., & Iwami, Y. (2016). Meteorological Drought and Flood Assessment Using the Comparative SPI Approach in Asia Under Climate Change. Journal of Disaster Research, 11(6), 1082–1090.
Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770–799. http://ascelibrary.org/doi/10.1061/TACEAT.0006518
Jain, V. K., Pandey, R. P., Jain, M. K., & Byun, H.-R. (2015). Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather and Climate Extremes, 8, 1–11. http://www.sciencedirect.com/science/article/pii/S2212094715000213
Jha, S. K., & Sivakumar, B. (2017). Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size. Journal of Hydrology, 554, 482–489. Elsevier. https://linkinghub.elsevier.com/retrieve/pii/S0022169417306340
Kantelhardt, J. W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A., & Havlin, S. (2006). Long-term persistence and multifractality of precipitation and river runoff records. Journal of Geophysical Research: Atmospheres, 111(D1). John Wiley & Sons, Ltd. https://doi.org/10.1029/2005JD005881
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1–4), 87–114. https://linkinghub.elsevier.com/retrieve/pii/S0378437102013833
Kostopoulou, E., Giannakopoulos, C., Krapsiti, D., & Karali, A. (2017). Temporal and Spatial Trends of the Standardized Precipitation Index (SPI) in Greece Using Observations and Output from Regional Climate Models (pp. 475–481). http://link.springer.com/10.1007/978-3-319-35095-0_68
Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change, 129(1–2), 103–115. http://link.springer.com/10.1007/s10584-014-1310-1
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology (Vol. 17, pp. 179–183). Boston.
Ogunjo, S. T. (2021). Multifractal Properties of Meteorological Drought at Different Time Scales in a Tropical Location. Fluctuation and Noise Letters, 20(01), 2150007. https://www.worldscientific.com/doi/abs/10.1142/S0219477521500073
Palmer, W. C. (1968). Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise, 21(4), 156–161. Routledge. https://doi.org/10.1080/00431672.1968.9932814
Santana, L. I. T. de, Silva, A. S. A. da, Menezes, R. S. C., & Stosic, T. (2020). Recurrence quantification analysis of monthly rainfall time series in Pernambuco, Brazil. Research, Society and Development, 9(9), e637997737. https://rsdjournal.org/index.php/rsd/article/view/7737
Santos, J. F., Pulido-Calvo, I., & Portela, M. M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3). http://doi.wiley.com/10.1029/2009WR008071
Silva, A. S. A., Menezes, R. S. C., Rosso, O. A., Stosic, B., & Stosic, T. (2021). Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil. Chaos, Solitons & Fractals, 143, 110623. https://linkinghub.elsevier.com/retrieve/pii/S0960077920310146
Silva, A. S. A., Menezes, R. S. C., Telesca, L., Stosic, B., & Stosic, T. (2021). Fisher Shannon analysis of drought/wetness episodes along a rainfall gradient in Northeast Brazil. International Journal of Climatology, 41(S1). https://onlinelibrary.wiley.com/doi/10.1002/joc.6834
Silva, H. S., Silva, J. R. S., & Stosic, T. (2020). Multifractal analysis of air temperature in Brazil. Physica A: Statistical Mechanics and its Applications, 549, 124333. https://linkinghub.elsevier.com/retrieve/pii/S0378437120301114
Sivakumar, B., & Singh, V. P. (2012). Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework. Hydrology and Earth System Sciences, 16(11), 4119–4131. https://www.hydrol-earth-syst-sci.net/16/4119/2012/
Stosic, T., Nejad, S. A., & Stosic, B. (2020). MULTIFRACTAL ANALYSIS OF BRAZILIAN AGRICULTURAL MARKET. Fractals, 28(05), 2050076. https://www.worldscientific.com/doi/abs/10.1142/S0218348X20500760
Svoboda, M., Hayes, M., & Wood, D. (2012). Standardized precipitation index user guide. World Meteorological Organization Geneva, Switzerland. Geneva, Switzerland.
Tan, X., & Gan, T. Y. (2017). Multifractality of Canadian precipitation and streamflow. International Journal of Climatology, 37, 1221–1236. http://doi.wiley.com/10.1002/joc.5078
Tatli, H., & Dalfes, H. N. (2020). Long-Time Memory in Drought via Detrended Fluctuation Analysis. Water Resources Management, 34(3), 1199–1212. https://doi.org/10.1007/s11269-020-02493-9
Telesca, L., & Toth, L. (2016). Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series. Physica A: Statistical Mechanics and its Applications, 448, 21–29. https://linkinghub.elsevier.com/retrieve/pii/S0378437115011231
Thom, H. C. S. (1958). A NOTE ON THE GAMMA DISTRIBUTION. Monthly Weather Review, 86(4), 117–122. http://journals.ametsoc.org/doi/10.1175/1520-0493(1958)086%3C0117:ANOTGD%3E2.0.CO;2
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696–1718.
Zorick, T., & Mandelkern, M. A. (2013). Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique. (C. M. Aegerter, Ed.)PLoS ONE, 8(7), e68360. https://dx.plos.org/10.1371/journal.pone.0068360
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Antonio Samuel Alves da Silva; Rômulo Simões Cezar Menezes; Tatijana Stosic
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.