Análise multifractal do índice de precipitação padronizado

Autores

DOI:

https://doi.org/10.33448/rsd-v10i7.16535

Palavras-chave:

Multrifactal; Precipitação; SPI; Pernambuco.

Resumo

Em muitos países tropicais incluindo Brasil observou-se que as mudanças nos padrões de chuva causam inundações e secas com tendência a continuar se agravar durante século 21.  Para diminuir as consequências na vida e saúde humana, atividades econômicas, ecossistemas e infraestrutura é necessário desenvolver modelos de previsão mais confiáveis. O primeiro passo nesta direção é uma análise detalhada da variabilidade climática na região estudada. Neste trabalho analisou-se propriedades multifractais das séries temporais do Índice de Precipitação Padronizado (SPI), desenvolvido para classificar condições secas/úmidas de acordo com severidade. Este índice foi calculado para diferentes escalas de tempo (1, 3, 6 e 12 meses) e analisado utilizando o método Multifractal detrended fluctuation analysis. Os parâmetros de complexidade do espectro multifractal (posição de máximo, largura e assimetria) junto com o expoente de Hurst, mostraram que as séries de SPI são geradas pelo processo multifractal com multifractalidade e persistência mais forte para maiores escalas de acumulação da chuva.

Referências

Abramowitz, M., Stegun, I. A., & Romer, R. H. (1988). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Journal of Physics, 56(10), 958–958. http://aapt.scitation.org/doi/10.1119/1.15378

Adarsh, S., Kumar, D. N., Deepthi, B., Gayathri, G., Aswathy, S. S., & Bhagyasree, S. (2019). Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. International Journal of Climatology, 39(11), 4234–4255. John Wiley & Sons, Ltd. https://doi.org/10.1002/joc.6070

Asadi Zarch, M. A., Sivakumar, B., & Sharma, A. (2015). Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). Journal of Hydrology, 526, 183–195. http://www.sciencedirect.com/science/article/pii/S002216941400763X

Barreto, I. D. de C., & Stosic, T. (2021). Multifractal analysis of rainfall in coastal area in Pernambuco, Brazil. Research, Society and Development, 10(2), e15410212424. https://rsdjournal.org/index.php/rsd/article/view/12424

Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2015). Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index. Water Resources Management, 29(2), 557–573. https://doi.org/10.1007/s11269-014-0842-5

Chadwick, R., Good, P., Martin, G., & Rowell, D. P. (2016). Large rainfall changes consistently projected over substantial areas of tropical land. Nature Climate Change, 6(2), 177–181. Nature Publishing Group. http://www.nature.com/articles/nclimate2805

Douglas, E. M., & Barros, A. P. (2003). Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United States. Journal of Hydrometeorology, 4(6), 1012–1024. http://journals.ametsoc.org/doi/10.1175/1525-7541(2003)004%3C1012:PMPEUM%3E2.0.CO;2

Fuwape, I. A., Ogunjo, S. T., Oluyamo, S. S., & Rabiu, A. B. (2017). Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theoretical and Applied Climatology, 130(1), 119–132. https://doi.org/10.1007/s00704-016-1867-x

García-Marín, A. P., Estévez, J., Medina-Cobo, M. T., & Ayuso-Muñoz, J. L. (2015). Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 529, 106–119. https://linkinghub.elsevier.com/retrieve/pii/S0022169415005181

García‐Marín, A. P., Jiménez‐Hornero, F. J., & Ayuso‐Muñoz, J. L. (2008). Multifractal analysis as a tool for validating a rainfall model. Hydrological Processes, 22(14), 2672–2688. http://doi.wiley.com/10.1002/hyp.6864

Hasegawa, A., Gusyev, M., & Iwami, Y. (2016). Meteorological Drought and Flood Assessment Using the Comparative SPI Approach in Asia Under Climate Change. Journal of Disaster Research, 11(6), 1082–1090.

Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770–799. http://ascelibrary.org/doi/10.1061/TACEAT.0006518

Jain, V. K., Pandey, R. P., Jain, M. K., & Byun, H.-R. (2015). Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather and Climate Extremes, 8, 1–11. http://www.sciencedirect.com/science/article/pii/S2212094715000213

Jha, S. K., & Sivakumar, B. (2017). Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size. Journal of Hydrology, 554, 482–489. Elsevier. https://linkinghub.elsevier.com/retrieve/pii/S0022169417306340

Kantelhardt, J. W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A., & Havlin, S. (2006). Long-term persistence and multifractality of precipitation and river runoff records. Journal of Geophysical Research: Atmospheres, 111(D1). John Wiley & Sons, Ltd. https://doi.org/10.1029/2005JD005881

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1–4), 87–114. https://linkinghub.elsevier.com/retrieve/pii/S0378437102013833

Kostopoulou, E., Giannakopoulos, C., Krapsiti, D., & Karali, A. (2017). Temporal and Spatial Trends of the Standardized Precipitation Index (SPI) in Greece Using Observations and Output from Regional Climate Models (pp. 475–481). http://link.springer.com/10.1007/978-3-319-35095-0_68

Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change, 129(1–2), 103–115. http://link.springer.com/10.1007/s10584-014-1310-1

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology (Vol. 17, pp. 179–183). Boston.

Ogunjo, S. T. (2021). Multifractal Properties of Meteorological Drought at Different Time Scales in a Tropical Location. Fluctuation and Noise Letters, 20(01), 2150007. https://www.worldscientific.com/doi/abs/10.1142/S0219477521500073

Palmer, W. C. (1968). Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise, 21(4), 156–161. Routledge. https://doi.org/10.1080/00431672.1968.9932814

Santana, L. I. T. de, Silva, A. S. A. da, Menezes, R. S. C., & Stosic, T. (2020). Recurrence quantification analysis of monthly rainfall time series in Pernambuco, Brazil. Research, Society and Development, 9(9), e637997737. https://rsdjournal.org/index.php/rsd/article/view/7737

Santos, J. F., Pulido-Calvo, I., & Portela, M. M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3). http://doi.wiley.com/10.1029/2009WR008071

Silva, A. S. A., Menezes, R. S. C., Rosso, O. A., Stosic, B., & Stosic, T. (2021). Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil. Chaos, Solitons & Fractals, 143, 110623. https://linkinghub.elsevier.com/retrieve/pii/S0960077920310146

Silva, A. S. A., Menezes, R. S. C., Telesca, L., Stosic, B., & Stosic, T. (2021). Fisher Shannon analysis of drought/wetness episodes along a rainfall gradient in Northeast Brazil. International Journal of Climatology, 41(S1). https://onlinelibrary.wiley.com/doi/10.1002/joc.6834

Silva, H. S., Silva, J. R. S., & Stosic, T. (2020). Multifractal analysis of air temperature in Brazil. Physica A: Statistical Mechanics and its Applications, 549, 124333. https://linkinghub.elsevier.com/retrieve/pii/S0378437120301114

Sivakumar, B., & Singh, V. P. (2012). Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework. Hydrology and Earth System Sciences, 16(11), 4119–4131. https://www.hydrol-earth-syst-sci.net/16/4119/2012/

Stosic, T., Nejad, S. A., & Stosic, B. (2020). MULTIFRACTAL ANALYSIS OF BRAZILIAN AGRICULTURAL MARKET. Fractals, 28(05), 2050076. https://www.worldscientific.com/doi/abs/10.1142/S0218348X20500760

Svoboda, M., Hayes, M., & Wood, D. (2012). Standardized precipitation index user guide. World Meteorological Organization Geneva, Switzerland. Geneva, Switzerland.

Tan, X., & Gan, T. Y. (2017). Multifractality of Canadian precipitation and streamflow. International Journal of Climatology, 37, 1221–1236. http://doi.wiley.com/10.1002/joc.5078

Tatli, H., & Dalfes, H. N. (2020). Long-Time Memory in Drought via Detrended Fluctuation Analysis. Water Resources Management, 34(3), 1199–1212. https://doi.org/10.1007/s11269-020-02493-9

Telesca, L., & Toth, L. (2016). Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series. Physica A: Statistical Mechanics and its Applications, 448, 21–29. https://linkinghub.elsevier.com/retrieve/pii/S0378437115011231

Thom, H. C. S. (1958). A NOTE ON THE GAMMA DISTRIBUTION. Monthly Weather Review, 86(4), 117–122. http://journals.ametsoc.org/doi/10.1175/1520-0493(1958)086%3C0117:ANOTGD%3E2.0.CO;2

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696–1718.

Zorick, T., & Mandelkern, M. A. (2013). Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique. (C. M. Aegerter, Ed.)PLoS ONE, 8(7), e68360. https://dx.plos.org/10.1371/journal.pone.0068360

Downloads

Publicado

20/06/2021

Como Citar

SILVA, A. S. A. da; MENEZES, R. S. C.; STOSIC, T. Análise multifractal do índice de precipitação padronizado. Research, Society and Development, [S. l.], v. 10, n. 7, p. e24710716535, 2021. DOI: 10.33448/rsd-v10i7.16535. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16535. Acesso em: 22 dez. 2024.

Edição

Seção

Ciências Agrárias e Biológicas