Production of biosurfactant by Bacillus subtilis UCP 0999 using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates




Agro-industrial substrates; Anionic tensioactive; Surface tension; Emulsification index.


This study focused on the low-cost production of biosurfactant by Bacillus subtilis UCP 0999, using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates. A 22 full-factorial design (FFD) was employed to investigate the effects of concentrations of agro-industrial wastes in surface tension (ST) and emulsification index (EI24). According to the results, the minimum value of ST (33.2 mN/m) and the maximum value of EI24 (95%) was obtained at central point of the FFD, using 5% CWW and 2% WFO. Statistical analyses demonstrated the significative influence of both substrates in ST and EI24. The biosurfactant showed 2.67 g/L yield and anionic and lipopeptide nature by Zeta potential and Fourier transform infrared (FT-IR) spectroscopy, respectively. In addition, promising applications of biosurfactant as biodispersant and viscosity reducing agent were demonstrated, suggesting its potential use in petroleum industry or bioremediation of hydrophobic pollutants.

Author Biographies

Patricia Cristina de Veras Souza Maia, University Federal Rural of Pernambuco

Network in Biotechnolgy - Doctorate RENORBIO

Dayana Montero Rodríguez, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology-NPCIAMB

Adriana Ferreira de Souza, Catholic University of Pernambuco

Nucleus of Research in Environmentl Sciences and Biotechnology-NPCIAMB

Rosileide Fontenele da Silva Andrade, Catholic University of Pernambuco

School of  Health and Biological Sciences


Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., Joshi, S. J., Al-Makhmari, H. S., & Al-Sulaimani, H. S. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation, 81, 141-146. 10.1016/j.ibiod.2012.01.006

Almeda, R., Hyatt, C. & Buskey, E. J. (2014). Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton. Ecotoxicology and environmental safety, 106, pp.76-85. 10.1016/j.ecoenv.2014.04.028

Andrade Silva, N. R., Luna, M. A., Santiago, A. L., Franco, L. O., Silva, G. K., De Souza, P. M., & Campos-Takaki, G. M. (2014). Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International journal of molecular sciences, 15(9), 15377-15395. 10.3390/ijms150915377

Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13. 10.1186/s12934-018-1046-0

Barros, F. F. C.; Ponezi, A. N.; & Pastore, G. M. (2008). Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. Journal Industrial Microbiol Biotechnol., 35, 1071–1078. 10.1007/s10295-008-0385-y

Cagri-Mehmetoglu, A., Kusakli, S. & Van de Venter, M., (2012). Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. Journal of dairy science, 95(7), pp.3643-3649.

Cheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. 10.1016/j.heliyon.2020.e03861

Collins, T., Barber, M., & Rahman, P. K. (2022). Biosurfactants Industrial Demand (Market and Economy). Microbial Surfactants: Volume 2: Applications in Food and Agriculture, 44-62.

Das, A.J. & Kumar, R., 2019. Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environmental Technology & Innovation, 16, p.100450. 10.1016/j.eti.2019.100450

Daverey, A., & Dutta, K. (2021). COVID-19: Eco-friendly hand hygiene for human and environmental safety. Journal of environmental chemical engineering, 9(2), 104754. 10.1016/j.jece.2020.104754

de França, Í. W. L., de Oliveira, D. W. F., Giro, M. E. A., Melo, V. M. M., & Gonçalves, L. R. B. (2021). Production of surfactin by Bacillus subtilis LAMI005 and evaluation of its potential as tensoactive and emulsifier. The Canadian Journal of Chemical Engineering. 10.1002/cjce.24240

de França, Í. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., Melo, V. M. M., de Sant’ana, H. B., & Gonçalves, L. R. B. (2015). Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catalysis Today, 255, 10-15. 10.1016/j.cattod.2015.01.046

Devda, V., Chaudhary, K., Varjani, S., Pathak, B., Patel, A. K., Singhania, R. R., & Chaturvedi, P. (2021). Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered, 12(1), 4697-4718. 10.1080/21655979.2021.1946631

Falode, O. A., Adeleke, M. A., & Ogunshe, A. A. (2017). Evaluation of indigenous biosurfactant-producing bacteria for de-emulsification of crude oil emulsions. Microbiology Research Journal International, 18(3), 1-9.

Felix, A. K. N., Martins, J. J., Almeida, J. G. L., Giro, M. E. A., Cavalcante, K. F., Melo, V. M. M., & de Santiago Aguiar, R. S. (2019). Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces, 175, 256-263. 10.1016/j.colsurfb.2018.11.062

Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059. 10.1016/j.biortech.2021.126059

Ghazala, I., Bouassida, M., Krichen, F., Manuel Benito, J., Ellouz‐Chaabouni, S., & Haddar, A. (2017). Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: Production, characterization, and identification. Engineering in life sciences, 17(12), 1244-1253. 10.1002/elsc.201700020

Ickofa, J., Kayath, C. A., & Gadet, M. D. (2020). First development of a biotechnological ferment based on a consorsium of the genus Bacillus for the optimization of the fermentation process of cassava tubers. Advances in Microbiology, 10(10), 563-574. 10.4236/aim.2020.1010041

Jaiswal, S. K., & Dakora, F. D. (2019). Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in Africa. Frontiers in microbiology, 310.

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. 10.1016/S0167-7012(01)00259-7

Lichinga, K. N., Luanda, A., & Sahini, M. G. (2022). A novel alkali-surfactant for optimization of filtercake removal in oil–gas well. Journal of Petroleum Exploration and Production Technology, 1-14. 10.1007/s13202-021-01438-1

Maia, P. C., Santos, V. P., Fereira, A. S., Luna, M. A., Silva, T. A., Andrade, R. F., & Campos-Takaki, G. M. (2018). An efficient bioemulsifier-producing Bacillus subtilis UCP 0146 isolated from mangrove sediments. Colloids and Interfaces, 2(4), 58. 10.3390/colloids2040058

Meena, K. R., Dhiman, R., Singh, K., Kumar, S., Sharma, A., Kanwar, S. S., & Mandal, A. K. (2021). Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016. Microbial Cell Factories, 20(1), 1-12. 10.1186/s12934-021-01519-0

Montero-Rodríguez, D., Andrade, R. F., Ribeiro, D. L. R., Rubio-Ribeaux, D., Lima, R. A., Araújo, H. W., & Campos-Takaki, G. M. (2015). Bioremediation of petroleum derivative using biosurfactant produced by Serratia marcescens UCP/WFCC 1549 in low-cost medium. Int. J. Curr. Microbiol. App. Sci, 4(7), 550-562.

Nitschke, M., & Pastore, G. M. (2004). Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Applied Biochemistry and Biotechnology, 112(3), 163-172.

Nitschke, M., & Pastore, G. M. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource technology, 97(2), 336-341.

Paraszkiewicz, K., Bernat, P., Kuśmierska, A., Chojniak, J., & Płaza, G. (2018). Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. Journal of environmental management, 209, 65-70. 10.1016/j.jenvman.2017.12.033

Prajapati, P., Varjani, S., Singhania, R. R., Patel, A. K., Awasthi, M. K., Sindhu, R., & Chaturvedi, P. (2021). Critical review on technological advancements for effective waste management of municipal solid waste—Updates and way forward. Environmental Technology & Innovation, 23, 101749. 10.1016/j.eti.2021.101749

Ram, H., Sahu, A. K., Said, M. S., Banpurkar, A. G., Gajbhiye, J. M. and Dastager, S. G. (2019) A novel fatty alkene from marine bacteria: A thermo stable biosurfactant and its applications. Journal of hazardous materials, 380, p.120868.

Ramírez, I. M., Tsaousi, K., Rudden, M., Marchant, R., Alameda, E. J., Román, M. G., & Banat, I. M. (2015). Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresource technology, 198, 231-236.

Rocha, P. M., dos Santos Mendes, A. C., de Oliveira Júnior, S. D., de Araújo Padilha, C. E., de Sá Leitão, A. L. O., da Costa Nogueira, C., & Dos Santos, E. S. (2021). Kinetic study and characterization of surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as carbon source. Preparative Biochemistry & Biotechnology, 51(3), 300-308. 10.1080/10826068.2020.1815055

Santos, V. S. V., Silveira, E., & Pereira, B. B. (2018). Toxicity and applications of surfactin for health and environmental biotechnology. Journal of Toxicology and Environmental Health, Part B, 21(6-8), 382-399.

Shah, M. U. H., Moniruzzaman, M., Sivapragasam, M., Talukder, M. M. R., Yusup, S. B., & Goto, M. (2019). A binary mixture of a biosurfactant and an ionic liquid surfactant as a green dispersant for oil spill remediation. Journal of Molecular liquids, 280, 111-119. 10.1016/j.molliq.2019.02.049

Silva, A. C. S. D., Santos, P. N. D., Silva, T. A. L., Andrade, R. F. S., & Campos-Takaki, G. M. (2018). Biosurfactant production by fungi as a sustainable alternative. Arquivos do Instituto Biológico, 85. 10.1590/1808-1657000502017

Smith, M. L., Gandolfi, S., Coshall, P. M., & Rahman, P. K. (2020). Biosurfactants: a Covid-19 perspective. Frontiers in Microbiology, 1341. 10.3389/fmicb.2020.01341

Song, D., Liang, S., Zhang, Q., Wang, J., & Yan, L. (2013). Development of high efficient and low toxic oil spill dispersants based on sorbitol derivants nonionic surfactants and glycolipid biosurfactants. Journal of Environmental Protection, 4(01), 16. 10.4236/jep.2013.41B004

Souza, A. F., Rodriguez, D. M., Ribeaux, D. R., Luna, M. A., Lima e Silva, T. A., Andrade, R. F. S., & Campos-Takaki, G. M. (2016). Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. International journal of molecular sciences, 17(10), 1608. 10.3390/ijms17101608

Sun, W., Zhu, B., Yang, F., Dai, M., Sehar, S., Peng, C., & Naz, I. (2021). Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere, 265, 129090. 10.1016/j.chemosphere.2020.129090

Techaoei, S., Leelapornpisid, P., Santiarwarn, D., & Lumyong, S. (2007). Preliminary screening of biosurfactant-producing microorganisms isolated from hot spring and garages in Northern Thailand. Current Applied Science and Technology, 7(1-1), 38-43.

Uzoigwe, C., Burgess, J. G., Ennis, C. J. & Rahman, P. K., (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, p.245. 10.3389/fmicb.2015.00245




How to Cite

MAIA, P. C. de V. S. .; RODRÍGUEZ, D. M.; SOUZA, A. F. de .; ANDRADE, R. F. da S.; CAMPOS-TAKAKI, G. M. Production of biosurfactant by Bacillus subtilis UCP 0999 using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates. Research, Society and Development, [S. l.], v. 11, n. 6, p. e17011628805, 2022. DOI: 10.33448/rsd-v11i6.28805. Disponível em: Acesso em: 28 may. 2022.