Production of biosurfactant by Bacillus subtilis UCP 0999 using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates
DOI:
https://doi.org/10.33448/rsd-v11i6.28805Keywords:
Agro-industrial substrates; Anionic tensioactive; Surface tension; Emulsification index.Abstract
This study focused on the low-cost production of biosurfactant by Bacillus subtilis UCP 0999, using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates. A 22 full-factorial design (FFD) was employed to investigate the effects of concentrations of agro-industrial wastes in surface tension (ST) and emulsification index (EI24). According to the results, the minimum value of ST (33.2 mN/m) and the maximum value of EI24 (95%) was obtained at central point of the FFD, using 5% CWW and 2% WFO. Statistical analyses demonstrated the significative influence of both substrates in ST and EI24. The biosurfactant showed 2.67 g/L yield and anionic and lipopeptide nature by Zeta potential and Fourier transform infrared (FT-IR) spectroscopy, respectively. In addition, promising applications of biosurfactant as biodispersant and viscosity reducing agent were demonstrated, suggesting its potential use in petroleum industry or bioremediation of hydrophobic pollutants.
References
Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., Joshi, S. J., Al-Makhmari, H. S., & Al-Sulaimani, H. S. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation, 81, 141-146. 10.1016/j.ibiod.2012.01.006
Almeda, R., Hyatt, C. & Buskey, E. J. (2014). Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton. Ecotoxicology and environmental safety, 106, pp.76-85. 10.1016/j.ecoenv.2014.04.028
Andrade Silva, N. R., Luna, M. A., Santiago, A. L., Franco, L. O., Silva, G. K., De Souza, P. M., & Campos-Takaki, G. M. (2014). Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International journal of molecular sciences, 15(9), 15377-15395. 10.3390/ijms150915377
Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13. 10.1186/s12934-018-1046-0
Barros, F. F. C.; Ponezi, A. N.; & Pastore, G. M. (2008). Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. Journal Industrial Microbiol Biotechnol., 35, 1071–1078. 10.1007/s10295-008-0385-y
Cagri-Mehmetoglu, A., Kusakli, S. & Van de Venter, M., (2012). Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. Journal of dairy science, 95(7), pp.3643-3649.
Cheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. 10.1016/j.heliyon.2020.e03861
Collins, T., Barber, M., & Rahman, P. K. (2022). Biosurfactants Industrial Demand (Market and Economy). Microbial Surfactants: Volume 2: Applications in Food and Agriculture, 44-62.
Das, A.J. & Kumar, R., 2019. Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environmental Technology & Innovation, 16, p.100450. 10.1016/j.eti.2019.100450
Daverey, A., & Dutta, K. (2021). COVID-19: Eco-friendly hand hygiene for human and environmental safety. Journal of environmental chemical engineering, 9(2), 104754. 10.1016/j.jece.2020.104754
de França, Í. W. L., de Oliveira, D. W. F., Giro, M. E. A., Melo, V. M. M., & Gonçalves, L. R. B. (2021). Production of surfactin by Bacillus subtilis LAMI005 and evaluation of its potential as tensoactive and emulsifier. The Canadian Journal of Chemical Engineering. 10.1002/cjce.24240
de França, Í. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., Melo, V. M. M., de Sant’ana, H. B., & Gonçalves, L. R. B. (2015). Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catalysis Today, 255, 10-15. 10.1016/j.cattod.2015.01.046
Devda, V., Chaudhary, K., Varjani, S., Pathak, B., Patel, A. K., Singhania, R. R., & Chaturvedi, P. (2021). Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered, 12(1), 4697-4718. 10.1080/21655979.2021.1946631
Falode, O. A., Adeleke, M. A., & Ogunshe, A. A. (2017). Evaluation of indigenous biosurfactant-producing bacteria for de-emulsification of crude oil emulsions. Microbiology Research Journal International, 18(3), 1-9.
Felix, A. K. N., Martins, J. J., Almeida, J. G. L., Giro, M. E. A., Cavalcante, K. F., Melo, V. M. M., & de Santiago Aguiar, R. S. (2019). Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces, 175, 256-263. 10.1016/j.colsurfb.2018.11.062
Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059. 10.1016/j.biortech.2021.126059
Ghazala, I., Bouassida, M., Krichen, F., Manuel Benito, J., Ellouz‐Chaabouni, S., & Haddar, A. (2017). Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: Production, characterization, and identification. Engineering in life sciences, 17(12), 1244-1253. 10.1002/elsc.201700020
Ickofa, J., Kayath, C. A., & Gadet, M. D. (2020). First development of a biotechnological ferment based on a consorsium of the genus Bacillus for the optimization of the fermentation process of cassava tubers. Advances in Microbiology, 10(10), 563-574. 10.4236/aim.2020.1010041
Jaiswal, S. K., & Dakora, F. D. (2019). Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in Africa. Frontiers in microbiology, 310.
Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. 10.1016/S0167-7012(01)00259-7
Lichinga, K. N., Luanda, A., & Sahini, M. G. (2022). A novel alkali-surfactant for optimization of filtercake removal in oil–gas well. Journal of Petroleum Exploration and Production Technology, 1-14. 10.1007/s13202-021-01438-1
Maia, P. C., Santos, V. P., Fereira, A. S., Luna, M. A., Silva, T. A., Andrade, R. F., & Campos-Takaki, G. M. (2018). An efficient bioemulsifier-producing Bacillus subtilis UCP 0146 isolated from mangrove sediments. Colloids and Interfaces, 2(4), 58. 10.3390/colloids2040058
Meena, K. R., Dhiman, R., Singh, K., Kumar, S., Sharma, A., Kanwar, S. S., & Mandal, A. K. (2021). Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016. Microbial Cell Factories, 20(1), 1-12. 10.1186/s12934-021-01519-0
Montero-Rodríguez, D., Andrade, R. F., Ribeiro, D. L. R., Rubio-Ribeaux, D., Lima, R. A., Araújo, H. W., & Campos-Takaki, G. M. (2015). Bioremediation of petroleum derivative using biosurfactant produced by Serratia marcescens UCP/WFCC 1549 in low-cost medium. Int. J. Curr. Microbiol. App. Sci, 4(7), 550-562.
Nitschke, M., & Pastore, G. M. (2004). Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Applied Biochemistry and Biotechnology, 112(3), 163-172.
Nitschke, M., & Pastore, G. M. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource technology, 97(2), 336-341.
Paraszkiewicz, K., Bernat, P., Kuśmierska, A., Chojniak, J., & Płaza, G. (2018). Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. Journal of environmental management, 209, 65-70. 10.1016/j.jenvman.2017.12.033
Prajapati, P., Varjani, S., Singhania, R. R., Patel, A. K., Awasthi, M. K., Sindhu, R., & Chaturvedi, P. (2021). Critical review on technological advancements for effective waste management of municipal solid waste—Updates and way forward. Environmental Technology & Innovation, 23, 101749. 10.1016/j.eti.2021.101749
Ram, H., Sahu, A. K., Said, M. S., Banpurkar, A. G., Gajbhiye, J. M. and Dastager, S. G. (2019) A novel fatty alkene from marine bacteria: A thermo stable biosurfactant and its applications. Journal of hazardous materials, 380, p.120868.
Ramírez, I. M., Tsaousi, K., Rudden, M., Marchant, R., Alameda, E. J., Román, M. G., & Banat, I. M. (2015). Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresource technology, 198, 231-236. https://doi.org/10.1016/j.biortech.2015.09.012
Rocha, P. M., dos Santos Mendes, A. C., de Oliveira Júnior, S. D., de Araújo Padilha, C. E., de Sá Leitão, A. L. O., da Costa Nogueira, C., & Dos Santos, E. S. (2021). Kinetic study and characterization of surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as carbon source. Preparative Biochemistry & Biotechnology, 51(3), 300-308. 10.1080/10826068.2020.1815055
Santos, V. S. V., Silveira, E., & Pereira, B. B. (2018). Toxicity and applications of surfactin for health and environmental biotechnology. Journal of Toxicology and Environmental Health, Part B, 21(6-8), 382-399.
Shah, M. U. H., Moniruzzaman, M., Sivapragasam, M., Talukder, M. M. R., Yusup, S. B., & Goto, M. (2019). A binary mixture of a biosurfactant and an ionic liquid surfactant as a green dispersant for oil spill remediation. Journal of Molecular liquids, 280, 111-119. 10.1016/j.molliq.2019.02.049
Silva, A. C. S. D., Santos, P. N. D., Silva, T. A. L., Andrade, R. F. S., & Campos-Takaki, G. M. (2018). Biosurfactant production by fungi as a sustainable alternative. Arquivos do Instituto Biológico, 85. 10.1590/1808-1657000502017
Smith, M. L., Gandolfi, S., Coshall, P. M., & Rahman, P. K. (2020). Biosurfactants: a Covid-19 perspective. Frontiers in Microbiology, 1341. 10.3389/fmicb.2020.01341
Song, D., Liang, S., Zhang, Q., Wang, J., & Yan, L. (2013). Development of high efficient and low toxic oil spill dispersants based on sorbitol derivants nonionic surfactants and glycolipid biosurfactants. Journal of Environmental Protection, 4(01), 16. 10.4236/jep.2013.41B004
Souza, A. F., Rodriguez, D. M., Ribeaux, D. R., Luna, M. A., Lima e Silva, T. A., Andrade, R. F. S., & Campos-Takaki, G. M. (2016). Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. International journal of molecular sciences, 17(10), 1608. 10.3390/ijms17101608
Sun, W., Zhu, B., Yang, F., Dai, M., Sehar, S., Peng, C., & Naz, I. (2021). Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere, 265, 129090. 10.1016/j.chemosphere.2020.129090
Techaoei, S., Leelapornpisid, P., Santiarwarn, D., & Lumyong, S. (2007). Preliminary screening of biosurfactant-producing microorganisms isolated from hot spring and garages in Northern Thailand. Current Applied Science and Technology, 7(1-1), 38-43.
Uzoigwe, C., Burgess, J. G., Ennis, C. J. & Rahman, P. K., (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, p.245. 10.3389/fmicb.2015.00245
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Patricia Cristina de Veras Souza Maia; Dayana Montero Rodríguez; Adriana Ferreira de Souza; Rosileide Fontenele da Silva Andrade; Galba Maria Campos-Takaki
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.