Cellulose (Mangifera indica) modified by melamine-silica applied in the treatment of effluents with chemically assisted precipitation

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15331

Keywords:

Mangifera indica; Cellulose; CEPT; Methylene Blue; Adsorption.

Abstract

The present work aimed to develop a composite based on cellulose, melamine and silica. Cellulose was obtained from the pruning residues of Mangifera indica for the chemically assisted primary treatment of effluents from the textile industry. The composite was characterized by FT-IR, SEM, TEM, TGA-DTG and Zeta Potential. The central composite planning was applied to optimize the composite mass and contact time in removing methylene blue. FT-IR showed that the composite presented the band for melamine at 815 cm-1. SEM and TEM revealed that on the composite surface there is melamine nitrogen, silicon and sodium from the catalyst. TGA-DTG showed that the composite is thermally more stable than cellulose, with 65% degradation. Due to the zeta potential, pH values above 5 provide greater stabilization and increase the anionic character of the composite. It was chosen as the best condition for the application 60 mg of composite and 30 minutes of contact time, with removal of 88.6 ± 3.5% of the methylene blue. The pH study revealed that above 5, the composite is more efficient. The dye adsorption process by the material was consistent with the Langmuir model (R2 = 0.9921). Thus, the cellulose-melamine-silica composite developed was effective in removing the methylene blue dye, presenting itself as a low-cost, biodegradable and efficient material, with potential for application in the treatment of effluents from the textile industry.

References

Agwuncha, S. C., Owonubi, S., Fapojuwo, D. P., Abdulkarim, A., Okonkwo, T. P., & Makhatha, E. M. (2020). Evaluation of mercerization treatment conditions on extracted cellulose from shea nut shell using FTIR and thermogravimetric analysis. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.05.473

AL-Hammadi, S. A., Al-Absi, A. A., Bin-Dahman, O. A., & Saleh, T. A. (2018). Poly(trimesoyl chloride-melamine) grafted on palygorskite for simultaneous ultra-trace removal of methylene blue and toxic metals. Journal of Environmental Management, 226(August), 358–364. https://doi.org/10.1016/j.jenvman.2018.08.025

Alencar, W. S., Acayanka, E., Lima, E. C., Royer, B., de Souza, F. E., Lameira, J., & Alves, C. N. (2012). Application of Mangifera indica (mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism. Chemical Engineering Journal, 209, 577–588. https://doi.org/10.1016/j.cej.2012.08.053

Alila, S., Besbes, I., Vilar, M. R., Mutjé, P., & Boufi, S. (2013). Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products, 41(1), 250–259. https://doi.org/10.1016/j.indcrop.2012.04.028

Ameen, F., Srinivasan, P., Selvankumar, T., Kamala-Kannan, S., Al Nadhari, S., Almansob, A., Dawoud, T., & Govarthanan, M. (2019). Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorganic Chemistry, 88(April), 102970. https://doi.org/10.1016/j.bioorg.2019.102970

Banat, F., Al-Asheh, S., Al-Ahmad, R., & Bni-Khalid, F. (2007). Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresource Technology, 98(16), 3017–3025. https://doi.org/10.1016/j.biortech.2006.10.023

Banerjee, S., Gautam, R. K., Jaiswal, A., Chattopadhyaya, M. C., & Sharma, Y. C. (2015). Rapid scavenging of methylene blue dye from a liquid phase by adsorption on alumina nanoparticles. RSC Advances, 5(19), 14425–14440. https://doi.org/10.1039/c4ra12235f

Başaran Kankılıç, G., & Metin, A. Ü. (2020). Phragmites australis as a new cellulose source: Extraction, characterization and adsorption of methylene blue. Journal of Molecular Liquids, 312. https://doi.org/10.1016/j.molliq.2020.113313

Beh, J. H., Lim, T. H., Lew, J. H., & Lai, J. C. (2020). Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. International Journal of Biological Macromolecules, 160, 836–845. https://doi.org/10.1016/j.ijbiomac.2020.05.227

Bogolitsyn, K. G., Zubov, I. N., Gusakova, M. A., Chukhchin, D. G., & Krasikova, A. A. (2015). Juniper wood structure under the microscope. Planta, 241(5), 1231–1239. https://doi.org/10.1007/s00425-015-2252-1

Bonetto, L. R., Crespo, J. S., Guégan, R., Esteves, V. I., & Giovanela, M. (2021). Removal of methylene blue from aqueous solutions using a solid residue of the apple juice industry: Full factorial design, equilibrium, thermodynamics and kinetics aspects. Journal of Molecular Structure, 1224, 129296. https://doi.org/10.1016/j.molstruc.2020.129296

Cai, H., Du, F., Li, L., Li, B., Li, J., & Shi, H. (2019). A practical approach based on FT-IR spectroscopy for identification of semi-synthetic and natural celluloses in microplastic investigation. Science of the Total Environment, 669, 692–701. https://doi.org/10.1016/j.scitotenv.2019.03.124

Chen, Q. J., Kang, M. C., Xie, Q. H., & Wang, J. H. (2020). Effect of melamine modified cellulose nanocrystals on the performance of oil-immersed transformer insulation paper. Cellulose, 27(13), 7621–7636. https://doi.org/10.1007/s10570-020-03305-4

Choi, J., Fuentes, C., Fransson, J., Wahlgren, M., & Nilsson, L. (2020). Separation and zeta-potential determination of proteins and their oligomers using electrical asymmetrical flow field-flow fractionation (EAF4). Journal of Chromatography A, 1633, 461625. https://doi.org/10.1016/j.chroma.2020.461625

Crothers, A. R., Li, C., & Radke, C. J. (2021). A grahame triple-layer model unifies mica monovalent ion exchange, zeta potential, and surface forces. Advances in Colloid and Interface Science, 288(65), 102335. https://doi.org/10.1016/j.cis.2020.102335

Deeksha, B., Sadanand, V., Hariram, N., & Rajulu, A. V. (2021). Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. Journal of Bioresources and Bioproducts, 6(1), 75–81. https://doi.org/10.1016/j.jobab.2021.01.003

Dong, Y., Zhang, H., Zhong, G., Yao, G., & Lai, B. (2021). Cellulose / carbon Composites and their Applications in Water Treatment – a Review. Chemical Engineering Journal, 405(August 2020). https://doi.org/10.1016/j.cej.2020.126980

El-Bouraie, M. (2015). Removal of the Malachite Green (MG) Dye From Textile Industrial Wastewater Using the Polyurethane Foam Functionalized with Salicylate. Journal of Dispersion Science and Technology, 36(9), 1228–1236. https://doi.org/10.1080/01932691.2014.964802

El-kott, A., Syef, A. F. A., Alshehri, M. A., Al Dessouky, S. I., & Keshk, S. M. A. S. (2019). Suppression efficacy of lignosulfonate/mercerized cotton fiber composite against cancer cell’s activities. Advanced Composites Letters, 28, 1–9. https://doi.org/10.1177/0963693519875974

Gómez-Carracedo, A., Alvarez-Lorenzo, C., Coca, R., Martínez-Pacheco, R., Concheiro, A., & Gómez-Amoza, J. L. (2009). Fractal analysis of SEM images and mercury intrusion porosimetry data for the microstructural characterization of microcrystalline cellulose-based pellets. Acta Materialia, 57(1), 295–303. https://doi.org/10.1016/j.actamat.2008.09.009

Gupta, M. C., & Iqbal, M. (2005). Ontogenetic histological changes in the wood of mango (Mangifera indica L. cv Deshi) exposed to coal-smoke pollution. Environmental and Experimental Botany, 54(3), 248–255. https://doi.org/10.1016/j.envexpbot.2004.09.003

Gurgel, L. V. A., Júnior, O. K., Gil, R. P. de F., & Gil, L. F. (2008). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresource Technology, 99(8), 3077–3083. https://doi.org/10.1016/j.biortech.2007.05.072

Halasz, I., Agarwal, M., & Miller, N. (2010). What can vibrational spectroscopy tell about the structure of dissolved sodium silicates? Microporus and Mesoporous Materials, 135, 74–81.

Han, S., Lyu, S., Chen, Z., Wang, S., & Fu, F. (2019). Fabrication of melamine–urea–formaldehyde/paraffin microcapsules modified with cellulose nanocrystals via in situ polymerization. Journal of Materials Science, 54(9), 7383–7396. https://doi.org/10.1007/s10853-019-03352-8

Haque, A. N. M. A., Remadevi, R., Rojas, O. J., Wang, X., & Naebe, M. (2020). Kinetics and equilibrium adsorption of methylene blue onto cotton gin trash bioadsorbents. Cellulose, 27(11), 6485–6504. https://doi.org/10.1007/s10570-020-03238-y

Hazarika, A., Deka, B. K., & Maji, T. K. (2015). Melamine-formaldehyde acrylamide and gum polymer impregnated wood polymer nanocomposite. Journal of Bionic Engineering, 12(2), 304–315. https://doi.org/10.1016/S1672-6529(14)60123-2

Henriksson, M., & Berglund, L. A. (2007). Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde. Journal of Applied Polymer Science, 106, 2817–2824. https://doi.org/10.1002/app.26946

Ho, Y. S., Porter, J. F., & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, & Soil Pollution, 141(1–4), 1–33.

Husson, E., Buchoux, S., Avondo, C., Cailleu, D., Djellab, K., Gosselin, I., Wattraint, O., & Sarazin, C. (2011). Enzymatic hydrolysis of ionic liquid-pretreated celluloses: Contribution of CP-MAS 13C NMR and SEM. Bioresource Technology, 102(15), 7335–7342. https://doi.org/10.1016/j.biortech.2011.04.097

Jawaid, S., Talpur, F. N., Afridi, H. I., Nizamani, S. M., Khaskheli, A. A., & Naz, S. (2014). Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy. Analytical Methods, 6(14), 5269–5273. https://doi.org/10.1039/c4ay00558a

Júnior, O. K., Gurgel, L. V. A., de Freitas, R. P., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 77(3), 643–650. https://doi.org/10.1016/j.carbpol.2009.02.016

Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

Kamble, Z., Behera, B. K., Mishra, R., & Behera, P. K. (2021). Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fibre reinforced green composites. Composites Part B: Engineering, 207(September 2020), 108595. https://doi.org/10.1016/j.compositesb.2020.108595

Kanemaru, T., Hirata, K., Takasu, S. I., Isobe, S. I., Mizuki, K., Mataka, S., & Nakamura, K. I. (2010). A fluorescence scanning electron microscope. Materials Today, 12(SUPPL.), 18–23. https://doi.org/10.1016/S1369-7021(10)70141-3

Kapur, M., & Mondal, M. K. (2013). Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chemical Engineering Journal, 218, 138–146. https://doi.org/10.1016/j.cej.2012.12.054

Keshk, S. M. A. S., & Hamdy, M. S. (2019). Preparation and physicochemical characterization of zinc oxide/sodium cellulose composite for food packaging. Turkish Journal of Chemistry, 43(1), 94–105. https://doi.org/10.3906/kim-1803-83

Krishnamachari, P., Hashaikeh, R., & Tiner, M. (2011). Modified cellulose morphologies and its composites; SEM and TEM analysis. Micron, 42(8), 751–761. https://doi.org/10.1016/j.micron.2011.05.001

Kwiecińska, B., Pusz, S., & Valentine, B. J. (2019). Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 211(May), 103203. https://doi.org/10.1016/j.coal.2019.05.010

Laskar, I. B., Gupta, R., Chatterjee, S., Vanlalveni, C., & Rokhum, L. (2020). Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renewable Energy, 161, 207–220. https://doi.org/10.1016/j.renene.2020.07.061

Li, Y., Cui, W., Liu, L., Zong, R., Yao, W., Liang, Y., & Zhu, Y. (2016). Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Applied Catalysis B: Environmental, 199, 412–423. https://doi.org/10.1016/j.apcatb.2016.06.053

Lutzke, A., Morey, K. J., Medford, J. I., & Kipper, M. J. (2020). An FT-IR and XPS spectroscopy dataset of Pinus ponderosa sporopollenin and related samples to elucidate sporopollenin structural features. Data in Brief, 29(January), 105129. https://doi.org/10.1016/j.dib.2020.105129

Lyu, R., Zhang, C., Xia, T., Chen, S., Wang, Z., Luo, X., Wang, L., Wang, Y., Yu, J., & Wang, C. W. (2020). Efficient adsorption of methylene blue by mesoporous silica prepared using sol-gel method employing hydroxyethyl cellulose as a template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606(May), 125425. https://doi.org/10.1016/j.colsurfa.2020.125425

Marzouki, R., Brahmia, A., Bondock, S., Keshk, S. M. A. S., Zid, M. F., Al-Sehemi, A. G., Koschella, A., & Heinze, T. (2019). Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-ionic conductor. Carbohydrate Polymers, 221(March), 29–36. https://doi.org/10.1016/j.carbpol.2019.05.083

Meira, A. M. (2010). Gestão de resíduos de arborização urbana. Escola Superior de Agricultura “Luiz de Queiroz.”

Merline, D. J., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal, 45(4), 413–419. https://doi.org/10.1038/pj.2012.162

Moghazy, R. M., Labena, A., & Husien, S. (2019). Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. International Journal of Biological Macromolecules, 134, 330–343. https://doi.org/10.1016/j.ijbiomac.2019.04.207

Nagarajan, D., Varada, O. M., & Venkatanarasimhan, S. (2020). Carbon dots coated on amine functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.08.071

Pathania, D., Sharma, A., & Srivastava, A. K. (2020). Modelling studies for remediation of Cr (VI) from wastewater by activated Mangifera indica bark. In Current Research in Green and Sustainable Chemistry (Vol. 3, Issue Vi). Elsevier B.V. https://doi.org/10.1016/j.crgsc.2020.100034

Pavan, F. A., Lima, E. C., Dias, S. L. P., & Mazzocato, A. C. (2008). Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. Journal of Hazardous Materials, 150(3), 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12. https://doi.org/10.1016/j.biortech.2012.08.133

Rehman, A., & Park, S. J. (2018). Highlighting the relative effects of surface characteristics and porosity on CO2 capture by adsorbents templated from melamine-based polyaminals. Journal of Solid State Chemistry, 258(November 2017), 573–581. https://doi.org/10.1016/j.jssc.2017.11.019

Rizvi, S., Goswami, L., & Gupta, S. K. (2020). A holistic approach for melanoidin removal via Fe-impregnated activated carbon prepared from Mangifera indica leaves biomass. Bioresource Technology Reports, 12(August), 100591. https://doi.org/10.1016/j.biteb.2020.100591

Sahiner, N., Demirci, S., & Sel, K. (2016). Covalent organic framework based on melamine and dibromoalkanes for versatile use. Journal of Porous Materials, 23(4), 1025–1035. https://doi.org/10.1007/s10934-016-0160-9

Saleh, T. A., Sarı, A., & Tuzen, M. (2017). Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chemical Engineering Journal, 307, 230–238. https://doi.org/10.1016/j.cej.2016.08.070

Seo, P. W., Khan, N. A., Hasan, Z., & Jhung, S. H. (2016). Adsorptive Removal of Artificial Sweeteners from Water Using Metal-Organic Frameworks Functionalized with Urea or Melamine. ACS Applied Materials and Interfaces, 8(43), 29799–29807. https://doi.org/10.1021/acsami.6b11115

Sharifi, F., Jahangiri, M., Nazir, I., Asim, M. H., Ebrahimnejad, P., Hupfauf, A., Gust, R., & Bernkop-Schnürch, A. (2021). Zeta potential changing nanoemulsions based on a simple zwitterion. Journal of Colloid and Interface Science, 585, 126–137. https://doi.org/10.1016/j.jcis.2020.11.054

Shen, L., Zhang, H., Lei, Y., Chen, Y., Liang, M., & Zou, H. (2021). Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance. Carbohydrate Polymers, 255(October 2020), 117405. https://doi.org/10.1016/j.carbpol.2020.117405

Singh, B., Gupta, M., Verma, A., & Tyagi, O. S. (2000). FT-IR microscopic studies on coupling agents: Treated natural fibres. Polymer International, 49(11), 1444–1451. https://doi.org/10.1002/1097-0126(200011)49:11<1444::AID-PI526>3.0.CO;2-9

Sreekala, M. S., & Thomas, S. (2003). Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composites Science and Technology, 63(6), 861–869. https://doi.org/10.1016/S0266-3538(02)00270-1

Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/8404965

Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C., & Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource Technology, 97(3), 488–493. https://doi.org/10.1016/j.biortech.2005.02.050

Ullah, S., Bustam, M. A., Ahmad, F., Nadeem, M., Naz, M. Y., Sagir, M., & Shariff, A. M. (2015). Synthesis and characterization of melamine formaldehyde resins for decorative paper applications. Journal of the Chinese Chemical Society, 62(2), 182–190. https://doi.org/10.1002/jccs.201400226

Vieira, J. G., Filho, G. R., Meireles, C. D. S., Faria, F. A. C., Gomide, D. D., Pasquini, D., Cruz, S. F. D., De Assunção, R. M. N., & Motta, L. A. D. C. (2012). Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polimeros, 22(1), 80–87. https://doi.org/10.1590/S0104-14282012005000011

Wang, N., Chen, J., Wang, J., Feng, J., & Yan, W. (2019). Removal of methylene blue by Polyaniline/TiO 2 hydrate: Adsorption kinetic, isotherm and mechanism studies. Powder Technology, 347, 93–102. https://doi.org/10.1016/j.powtec.2019.02.049

Xiong, Y., Tong, Q., Shan, W., Xing, Z., Wang, Y., Wen, S., & Lou, Z. (2017). Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Applied Surface Science, 416, 618–627. https://doi.org/10.1016/j.apsusc.2017.04.145

Yu, Y., Liu, S., Pei, Y., & Luo, X. (2021). Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. International Journal of Biological Macromolecules, 166, 1419–1428. https://doi.org/10.1016/j.ijbiomac.2020.11.021

Zeng, Q., Hao, T., Yuan, Z., & Chen, G. (2020). Dewaterability enhancement and sul fi de mitigation of CEPT sludge by electrochemical pretreatment. Water Research, 176, 115727. https://doi.org/10.1016/j.watres.2020.115727

Zhang, H., & Wang, X. (2009). Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(2–3), 129–138. https://doi.org/10.1016/j.colsurfa.2008.09.013

Zhang, Q., Zhang, Z., Teng, J., Huang, H., Peng, Q., Jiao, T., Hou, L., & Li, B. (2015). Highly efficient phosphate sequestration in aqueous solutions using nanomagnesium hydroxide modified polystyrene materials. Industrial and Engineering Chemistry Research, 54(11), 2940–2949. https://doi.org/10.1021/ie503943z

Zhang, Z., Zhu, M., & Zhang, D. (2018). A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass. Applied Energy, 220(March), 87–93. https://doi.org/10.1016/j.apenergy.2018.03.057

Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235–241. https://doi.org/10.1016/j.carbpol.2006.12.013

Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086–1093. https://doi.org/10.1016/j.carbpol.2009.10.045

Published

20/05/2021

How to Cite

MESQUITA JÚNIOR, J. S. de .; FIGUEIREDO, F. C.; SANTOS, E. C. dos; SILVA, D. S. N.; SANTOS JÚNIOR, J. R. dos. Cellulose (Mangifera indica) modified by melamine-silica applied in the treatment of effluents with chemically assisted precipitation. Research, Society and Development, [S. l.], v. 10, n. 6, p. e3710615331, 2021. DOI: 10.33448/rsd-v10i6.15331. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15331. Acesso em: 21 nov. 2024.

Issue

Section

Exact and Earth Sciences