Celulose (Mangifera indica) modificada por melamina-sílica aplicada no tratamento de efluentes com precipitação quimicamente assistida

Autores

DOI:

https://doi.org/10.33448/rsd-v10i6.15331

Palavras-chave:

Mangifera indica; Celulose; CEPT; Azul de Metileno; Adsorção.

Resumo

Este trabalho objetivou desenvolver um compósito a base de celulose, melamina e sílica. A celulose foi obtida dos resíduos de poda da Mangifera indica para o tratamento primário quimicamente assistido de efluentes da indústria têxtil. O compósito foi caracterizado por FT-IR, MEV, MET, TG-DTG e Potencial Zeta. O planejamento composto central foi aplicado para otimização da massa de compósito e tempo de contato na remoção de azul de metileno. O FT-IR mostrou que o compósito apresentou a banda para a melamina em 815 cm-1. O MEV e MET revelaram que na superfície do compósito há Nitrogênio da melamina, Silício e Sódio oriundos do catalisador. O TG-DTG mostrou que o compósito é termicamente mais estável que a celulose, com 65% de degradação. Pelo potencial zeta, valores de pH acima de 5 propiciam maior estabilização e incremento do caráter aniônico do compósito. Escolheu-se como a melhor condição para a aplicação 60 mg de compósito e 30 minutos de tempo de contato, com remoção de 88,6 ± 3,5% do azul de metileno. O estudo do pH revelou que acima de 5, o compósito é mais eficiente. O processo de adsorção do corante pelo material apresentou-se coerente ao modelo de Langmuir (R2 = 0,9921). Assim, o compósito de celulose-melamina-sílica desenvolvido foi eficaz na remoção do corante azul de metileno, apresentando-se como um material de baixo custo, biodegradável e eficiente, com potencialidades para a aplicação no tratamento dos efluentes da indústria têxtil.

Referências

Agwuncha, S. C., Owonubi, S., Fapojuwo, D. P., Abdulkarim, A., Okonkwo, T. P., & Makhatha, E. M. (2020). Evaluation of mercerization treatment conditions on extracted cellulose from shea nut shell using FTIR and thermogravimetric analysis. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.05.473

AL-Hammadi, S. A., Al-Absi, A. A., Bin-Dahman, O. A., & Saleh, T. A. (2018). Poly(trimesoyl chloride-melamine) grafted on palygorskite for simultaneous ultra-trace removal of methylene blue and toxic metals. Journal of Environmental Management, 226(August), 358–364. https://doi.org/10.1016/j.jenvman.2018.08.025

Alencar, W. S., Acayanka, E., Lima, E. C., Royer, B., de Souza, F. E., Lameira, J., & Alves, C. N. (2012). Application of Mangifera indica (mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism. Chemical Engineering Journal, 209, 577–588. https://doi.org/10.1016/j.cej.2012.08.053

Alila, S., Besbes, I., Vilar, M. R., Mutjé, P., & Boufi, S. (2013). Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products, 41(1), 250–259. https://doi.org/10.1016/j.indcrop.2012.04.028

Ameen, F., Srinivasan, P., Selvankumar, T., Kamala-Kannan, S., Al Nadhari, S., Almansob, A., Dawoud, T., & Govarthanan, M. (2019). Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorganic Chemistry, 88(April), 102970. https://doi.org/10.1016/j.bioorg.2019.102970

Banat, F., Al-Asheh, S., Al-Ahmad, R., & Bni-Khalid, F. (2007). Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresource Technology, 98(16), 3017–3025. https://doi.org/10.1016/j.biortech.2006.10.023

Banerjee, S., Gautam, R. K., Jaiswal, A., Chattopadhyaya, M. C., & Sharma, Y. C. (2015). Rapid scavenging of methylene blue dye from a liquid phase by adsorption on alumina nanoparticles. RSC Advances, 5(19), 14425–14440. https://doi.org/10.1039/c4ra12235f

Başaran Kankılıç, G., & Metin, A. Ü. (2020). Phragmites australis as a new cellulose source: Extraction, characterization and adsorption of methylene blue. Journal of Molecular Liquids, 312. https://doi.org/10.1016/j.molliq.2020.113313

Beh, J. H., Lim, T. H., Lew, J. H., & Lai, J. C. (2020). Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. International Journal of Biological Macromolecules, 160, 836–845. https://doi.org/10.1016/j.ijbiomac.2020.05.227

Bogolitsyn, K. G., Zubov, I. N., Gusakova, M. A., Chukhchin, D. G., & Krasikova, A. A. (2015). Juniper wood structure under the microscope. Planta, 241(5), 1231–1239. https://doi.org/10.1007/s00425-015-2252-1

Bonetto, L. R., Crespo, J. S., Guégan, R., Esteves, V. I., & Giovanela, M. (2021). Removal of methylene blue from aqueous solutions using a solid residue of the apple juice industry: Full factorial design, equilibrium, thermodynamics and kinetics aspects. Journal of Molecular Structure, 1224, 129296. https://doi.org/10.1016/j.molstruc.2020.129296

Cai, H., Du, F., Li, L., Li, B., Li, J., & Shi, H. (2019). A practical approach based on FT-IR spectroscopy for identification of semi-synthetic and natural celluloses in microplastic investigation. Science of the Total Environment, 669, 692–701. https://doi.org/10.1016/j.scitotenv.2019.03.124

Chen, Q. J., Kang, M. C., Xie, Q. H., & Wang, J. H. (2020). Effect of melamine modified cellulose nanocrystals on the performance of oil-immersed transformer insulation paper. Cellulose, 27(13), 7621–7636. https://doi.org/10.1007/s10570-020-03305-4

Choi, J., Fuentes, C., Fransson, J., Wahlgren, M., & Nilsson, L. (2020). Separation and zeta-potential determination of proteins and their oligomers using electrical asymmetrical flow field-flow fractionation (EAF4). Journal of Chromatography A, 1633, 461625. https://doi.org/10.1016/j.chroma.2020.461625

Crothers, A. R., Li, C., & Radke, C. J. (2021). A grahame triple-layer model unifies mica monovalent ion exchange, zeta potential, and surface forces. Advances in Colloid and Interface Science, 288(65), 102335. https://doi.org/10.1016/j.cis.2020.102335

Deeksha, B., Sadanand, V., Hariram, N., & Rajulu, A. V. (2021). Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. Journal of Bioresources and Bioproducts, 6(1), 75–81. https://doi.org/10.1016/j.jobab.2021.01.003

Dong, Y., Zhang, H., Zhong, G., Yao, G., & Lai, B. (2021). Cellulose / carbon Composites and their Applications in Water Treatment – a Review. Chemical Engineering Journal, 405(August 2020). https://doi.org/10.1016/j.cej.2020.126980

El-Bouraie, M. (2015). Removal of the Malachite Green (MG) Dye From Textile Industrial Wastewater Using the Polyurethane Foam Functionalized with Salicylate. Journal of Dispersion Science and Technology, 36(9), 1228–1236. https://doi.org/10.1080/01932691.2014.964802

El-kott, A., Syef, A. F. A., Alshehri, M. A., Al Dessouky, S. I., & Keshk, S. M. A. S. (2019). Suppression efficacy of lignosulfonate/mercerized cotton fiber composite against cancer cell’s activities. Advanced Composites Letters, 28, 1–9. https://doi.org/10.1177/0963693519875974

Gómez-Carracedo, A., Alvarez-Lorenzo, C., Coca, R., Martínez-Pacheco, R., Concheiro, A., & Gómez-Amoza, J. L. (2009). Fractal analysis of SEM images and mercury intrusion porosimetry data for the microstructural characterization of microcrystalline cellulose-based pellets. Acta Materialia, 57(1), 295–303. https://doi.org/10.1016/j.actamat.2008.09.009

Gupta, M. C., & Iqbal, M. (2005). Ontogenetic histological changes in the wood of mango (Mangifera indica L. cv Deshi) exposed to coal-smoke pollution. Environmental and Experimental Botany, 54(3), 248–255. https://doi.org/10.1016/j.envexpbot.2004.09.003

Gurgel, L. V. A., Júnior, O. K., Gil, R. P. de F., & Gil, L. F. (2008). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresource Technology, 99(8), 3077–3083. https://doi.org/10.1016/j.biortech.2007.05.072

Halasz, I., Agarwal, M., & Miller, N. (2010). What can vibrational spectroscopy tell about the structure of dissolved sodium silicates? Microporus and Mesoporous Materials, 135, 74–81.

Han, S., Lyu, S., Chen, Z., Wang, S., & Fu, F. (2019). Fabrication of melamine–urea–formaldehyde/paraffin microcapsules modified with cellulose nanocrystals via in situ polymerization. Journal of Materials Science, 54(9), 7383–7396. https://doi.org/10.1007/s10853-019-03352-8

Haque, A. N. M. A., Remadevi, R., Rojas, O. J., Wang, X., & Naebe, M. (2020). Kinetics and equilibrium adsorption of methylene blue onto cotton gin trash bioadsorbents. Cellulose, 27(11), 6485–6504. https://doi.org/10.1007/s10570-020-03238-y

Hazarika, A., Deka, B. K., & Maji, T. K. (2015). Melamine-formaldehyde acrylamide and gum polymer impregnated wood polymer nanocomposite. Journal of Bionic Engineering, 12(2), 304–315. https://doi.org/10.1016/S1672-6529(14)60123-2

Henriksson, M., & Berglund, L. A. (2007). Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde. Journal of Applied Polymer Science, 106, 2817–2824. https://doi.org/10.1002/app.26946

Ho, Y. S., Porter, J. F., & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, & Soil Pollution, 141(1–4), 1–33.

Husson, E., Buchoux, S., Avondo, C., Cailleu, D., Djellab, K., Gosselin, I., Wattraint, O., & Sarazin, C. (2011). Enzymatic hydrolysis of ionic liquid-pretreated celluloses: Contribution of CP-MAS 13C NMR and SEM. Bioresource Technology, 102(15), 7335–7342. https://doi.org/10.1016/j.biortech.2011.04.097

Jawaid, S., Talpur, F. N., Afridi, H. I., Nizamani, S. M., Khaskheli, A. A., & Naz, S. (2014). Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy. Analytical Methods, 6(14), 5269–5273. https://doi.org/10.1039/c4ay00558a

Júnior, O. K., Gurgel, L. V. A., de Freitas, R. P., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 77(3), 643–650. https://doi.org/10.1016/j.carbpol.2009.02.016

Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

Kamble, Z., Behera, B. K., Mishra, R., & Behera, P. K. (2021). Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fibre reinforced green composites. Composites Part B: Engineering, 207(September 2020), 108595. https://doi.org/10.1016/j.compositesb.2020.108595

Kanemaru, T., Hirata, K., Takasu, S. I., Isobe, S. I., Mizuki, K., Mataka, S., & Nakamura, K. I. (2010). A fluorescence scanning electron microscope. Materials Today, 12(SUPPL.), 18–23. https://doi.org/10.1016/S1369-7021(10)70141-3

Kapur, M., & Mondal, M. K. (2013). Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chemical Engineering Journal, 218, 138–146. https://doi.org/10.1016/j.cej.2012.12.054

Keshk, S. M. A. S., & Hamdy, M. S. (2019). Preparation and physicochemical characterization of zinc oxide/sodium cellulose composite for food packaging. Turkish Journal of Chemistry, 43(1), 94–105. https://doi.org/10.3906/kim-1803-83

Krishnamachari, P., Hashaikeh, R., & Tiner, M. (2011). Modified cellulose morphologies and its composites; SEM and TEM analysis. Micron, 42(8), 751–761. https://doi.org/10.1016/j.micron.2011.05.001

Kwiecińska, B., Pusz, S., & Valentine, B. J. (2019). Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 211(May), 103203. https://doi.org/10.1016/j.coal.2019.05.010

Laskar, I. B., Gupta, R., Chatterjee, S., Vanlalveni, C., & Rokhum, L. (2020). Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renewable Energy, 161, 207–220. https://doi.org/10.1016/j.renene.2020.07.061

Li, Y., Cui, W., Liu, L., Zong, R., Yao, W., Liang, Y., & Zhu, Y. (2016). Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Applied Catalysis B: Environmental, 199, 412–423. https://doi.org/10.1016/j.apcatb.2016.06.053

Lutzke, A., Morey, K. J., Medford, J. I., & Kipper, M. J. (2020). An FT-IR and XPS spectroscopy dataset of Pinus ponderosa sporopollenin and related samples to elucidate sporopollenin structural features. Data in Brief, 29(January), 105129. https://doi.org/10.1016/j.dib.2020.105129

Lyu, R., Zhang, C., Xia, T., Chen, S., Wang, Z., Luo, X., Wang, L., Wang, Y., Yu, J., & Wang, C. W. (2020). Efficient adsorption of methylene blue by mesoporous silica prepared using sol-gel method employing hydroxyethyl cellulose as a template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606(May), 125425. https://doi.org/10.1016/j.colsurfa.2020.125425

Marzouki, R., Brahmia, A., Bondock, S., Keshk, S. M. A. S., Zid, M. F., Al-Sehemi, A. G., Koschella, A., & Heinze, T. (2019). Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-ionic conductor. Carbohydrate Polymers, 221(March), 29–36. https://doi.org/10.1016/j.carbpol.2019.05.083

Meira, A. M. (2010). Gestão de resíduos de arborização urbana. Escola Superior de Agricultura “Luiz de Queiroz.”

Merline, D. J., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal, 45(4), 413–419. https://doi.org/10.1038/pj.2012.162

Moghazy, R. M., Labena, A., & Husien, S. (2019). Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. International Journal of Biological Macromolecules, 134, 330–343. https://doi.org/10.1016/j.ijbiomac.2019.04.207

Nagarajan, D., Varada, O. M., & Venkatanarasimhan, S. (2020). Carbon dots coated on amine functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.08.071

Pathania, D., Sharma, A., & Srivastava, A. K. (2020). Modelling studies for remediation of Cr (VI) from wastewater by activated Mangifera indica bark. In Current Research in Green and Sustainable Chemistry (Vol. 3, Issue Vi). Elsevier B.V. https://doi.org/10.1016/j.crgsc.2020.100034

Pavan, F. A., Lima, E. C., Dias, S. L. P., & Mazzocato, A. C. (2008). Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. Journal of Hazardous Materials, 150(3), 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12. https://doi.org/10.1016/j.biortech.2012.08.133

Rehman, A., & Park, S. J. (2018). Highlighting the relative effects of surface characteristics and porosity on CO2 capture by adsorbents templated from melamine-based polyaminals. Journal of Solid State Chemistry, 258(November 2017), 573–581. https://doi.org/10.1016/j.jssc.2017.11.019

Rizvi, S., Goswami, L., & Gupta, S. K. (2020). A holistic approach for melanoidin removal via Fe-impregnated activated carbon prepared from Mangifera indica leaves biomass. Bioresource Technology Reports, 12(August), 100591. https://doi.org/10.1016/j.biteb.2020.100591

Sahiner, N., Demirci, S., & Sel, K. (2016). Covalent organic framework based on melamine and dibromoalkanes for versatile use. Journal of Porous Materials, 23(4), 1025–1035. https://doi.org/10.1007/s10934-016-0160-9

Saleh, T. A., Sarı, A., & Tuzen, M. (2017). Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chemical Engineering Journal, 307, 230–238. https://doi.org/10.1016/j.cej.2016.08.070

Seo, P. W., Khan, N. A., Hasan, Z., & Jhung, S. H. (2016). Adsorptive Removal of Artificial Sweeteners from Water Using Metal-Organic Frameworks Functionalized with Urea or Melamine. ACS Applied Materials and Interfaces, 8(43), 29799–29807. https://doi.org/10.1021/acsami.6b11115

Sharifi, F., Jahangiri, M., Nazir, I., Asim, M. H., Ebrahimnejad, P., Hupfauf, A., Gust, R., & Bernkop-Schnürch, A. (2021). Zeta potential changing nanoemulsions based on a simple zwitterion. Journal of Colloid and Interface Science, 585, 126–137. https://doi.org/10.1016/j.jcis.2020.11.054

Shen, L., Zhang, H., Lei, Y., Chen, Y., Liang, M., & Zou, H. (2021). Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance. Carbohydrate Polymers, 255(October 2020), 117405. https://doi.org/10.1016/j.carbpol.2020.117405

Singh, B., Gupta, M., Verma, A., & Tyagi, O. S. (2000). FT-IR microscopic studies on coupling agents: Treated natural fibres. Polymer International, 49(11), 1444–1451. https://doi.org/10.1002/1097-0126(200011)49:11<1444::AID-PI526>3.0.CO;2-9

Sreekala, M. S., & Thomas, S. (2003). Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composites Science and Technology, 63(6), 861–869. https://doi.org/10.1016/S0266-3538(02)00270-1

Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/8404965

Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C., & Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource Technology, 97(3), 488–493. https://doi.org/10.1016/j.biortech.2005.02.050

Ullah, S., Bustam, M. A., Ahmad, F., Nadeem, M., Naz, M. Y., Sagir, M., & Shariff, A. M. (2015). Synthesis and characterization of melamine formaldehyde resins for decorative paper applications. Journal of the Chinese Chemical Society, 62(2), 182–190. https://doi.org/10.1002/jccs.201400226

Vieira, J. G., Filho, G. R., Meireles, C. D. S., Faria, F. A. C., Gomide, D. D., Pasquini, D., Cruz, S. F. D., De Assunção, R. M. N., & Motta, L. A. D. C. (2012). Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polimeros, 22(1), 80–87. https://doi.org/10.1590/S0104-14282012005000011

Wang, N., Chen, J., Wang, J., Feng, J., & Yan, W. (2019). Removal of methylene blue by Polyaniline/TiO 2 hydrate: Adsorption kinetic, isotherm and mechanism studies. Powder Technology, 347, 93–102. https://doi.org/10.1016/j.powtec.2019.02.049

Xiong, Y., Tong, Q., Shan, W., Xing, Z., Wang, Y., Wen, S., & Lou, Z. (2017). Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Applied Surface Science, 416, 618–627. https://doi.org/10.1016/j.apsusc.2017.04.145

Yu, Y., Liu, S., Pei, Y., & Luo, X. (2021). Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. International Journal of Biological Macromolecules, 166, 1419–1428. https://doi.org/10.1016/j.ijbiomac.2020.11.021

Zeng, Q., Hao, T., Yuan, Z., & Chen, G. (2020). Dewaterability enhancement and sul fi de mitigation of CEPT sludge by electrochemical pretreatment. Water Research, 176, 115727. https://doi.org/10.1016/j.watres.2020.115727

Zhang, H., & Wang, X. (2009). Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(2–3), 129–138. https://doi.org/10.1016/j.colsurfa.2008.09.013

Zhang, Q., Zhang, Z., Teng, J., Huang, H., Peng, Q., Jiao, T., Hou, L., & Li, B. (2015). Highly efficient phosphate sequestration in aqueous solutions using nanomagnesium hydroxide modified polystyrene materials. Industrial and Engineering Chemistry Research, 54(11), 2940–2949. https://doi.org/10.1021/ie503943z

Zhang, Z., Zhu, M., & Zhang, D. (2018). A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass. Applied Energy, 220(March), 87–93. https://doi.org/10.1016/j.apenergy.2018.03.057

Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235–241. https://doi.org/10.1016/j.carbpol.2006.12.013

Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086–1093. https://doi.org/10.1016/j.carbpol.2009.10.045

Downloads

Publicado

20/05/2021

Como Citar

MESQUITA JÚNIOR, J. S. de .; FIGUEIREDO, F. C.; SANTOS, E. C. dos; SILVA, D. S. N.; SANTOS JÚNIOR, J. R. dos. Celulose (Mangifera indica) modificada por melamina-sílica aplicada no tratamento de efluentes com precipitação quimicamente assistida. Research, Society and Development, [S. l.], v. 10, n. 6, p. e3710615331, 2021. DOI: 10.33448/rsd-v10i6.15331. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15331. Acesso em: 27 jul. 2024.

Edição

Seção

Ciências Exatas e da Terra